A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of RL/PVP Mixtures
2.3. Characterizations
2.4. Electrospinning
3. Results and Discussion
3.1. Effects of RL/PVP Ratio on Membrane Formation
3.2. Effects of Solution Solubility on Film Formation
3.3. Effects of Solution Solubility on Contact Angle
3.4. FT-IR Spectra Analysis
3.5. Water Resistance of Nanofilms
3.6. Acid Resistance of Nanofilms
3.7. Tensile Strength
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, R.; Harigaya, S.; Ishimura, T.; Nagase, K.; Miyakoshi, T. Development of a fast drying lacquer based on raw lacquer sap. J. Prog. Org. Coat. 2004, 51, 238–243. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhang, Q.; Shen, Q.; Li, D.; Xiao, Z. Effects of polysaccharides on the properties of Chinese lacquer sap. J. Prog. Org. Coat. 2015, 78, 176–182. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Q.; Bai, W.; Lin, J. Preparation and properties of raw lacquer/multihydroxyl polyacrylate/organophilic montmorillonite nanocomposites. J. Polym. Bull. 2011, 68, 983–992. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, S.L.; Seo, J. The preparation and characterization of urushiol powders (YPUOH) based on urushiol. J. Prog. Org. Coat. 2013, 76, 1465–1470. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, Y.; Yang, Z.; Yuan, T.; Huang, J.; Li, P.; Liu, Y.; Zhang, S.; Yang, Z. Facile synthesis and characterization of urushiol analogues from tung oil via ultraviolet photocatalysis. Prog. Org. Coat. 2018, 120, 240–251. [Google Scholar] [CrossRef]
- Kim, H.S.; Yeum, J.H.; Choi, S.W.; Lee, J.Y.; Cheong, I.W. Urushiol/polyurethane–urea dispersions and their film properties. J. Prog. Org. Coat. 2009, 65, 341–347. [Google Scholar] [CrossRef]
- Gao, R.; Wang, L.; Lin, Q. Effect of hexamethylenetetramine on the property of Chinese lacquer film. J. Prog. Org. Coat. 2019, 133, 169–173. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Shen, F.; Cai, J.; Zhou, M. Promotion by copper (II)-modified montmorillonite of the drying property of oriental lacquer sap. J. Prog. Org. Coat. 2018, 118, 72–81. [Google Scholar] [CrossRef]
- Xu, Y.; Tong, Z.; Xia, J.; Hu, B.; Lin, J. Urushiol-formaldehyde polymer microporous films with acid-alkali resistance property: Effects of formation conditions on surface morphologies. J. Prog. Org. Coat. 2011, 72, 586–591. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Zhou, H.; Tao, R.; Chen, H.; Ye, J.; Zhang, Y. Preparation and characterization of urushiol methylene acetal derivatives with various degrees of unsaturation in Alkyl Side Chain. J. Int. J. Polym. Sci. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Elsabee, M.Z.; Naguib, H.F.; Morsi, R.E. Chitosan based nanofibers, review. J. Mater. Sci. Eng. C 2012, 32, 1711–1726. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Simchi, A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. J. Mater. Ence Eng. C 2017, 70 Pt 1, 121–131. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Cyclodextrin nanofibers by electrospinning. J. Chem. Commun. 2010, 46, 6903–6905. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. J. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Jiang, T.; Carbone, E.J.; Lo, K.W.H.; Laurencin, C.T. Electrospinning of polymer nanofibers for tissue regeneration. J. Prog. Polym. Sci. 2015, 46, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sampson, S.L.; Saraiva, L.; Gustafsson, K.; Jayasinghe, S.N.; Robertson, B.D. Cell electrospinning: An in vitro and in vivo study. J. Small 2014, 10, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. J. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. Electrospinning of nanofibers and their applications for energy devices. J. J. Nanomater. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Kennedy, S.J.; Wu, Y. Electrospinning materials for energy-related applications and devices. J. Power Sources 2011, 196, 4886–4904. [Google Scholar] [CrossRef]
- Lee, S.; Kay Obendorf, S. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. J. J. Appl. Polym. Sci. 2006, 102, 3430–3437. [Google Scholar] [CrossRef]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. J. Biomater. 2008, 29, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. J. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
RL/PVP (g) | Voltage 1 (kV) | Voltage 2 (kV) | Voltage 3 (kV) | The Average(kV) |
---|---|---|---|---|
0/3 | 15.85 | 16.46 | 16.09 | 16.13 |
2/2 | 16.85 | 17.65 | 17.06 | 17.19 |
3/3 | 18.32 | 19.21 | 18.68 | 18.73 |
4/4 | 21.07 | 20.46 | 19.68 | 20.40 |
RL/PVP | Before Testing (g) | After the Test (g) | Mass Loss (g) | Mass-Loss Rate |
---|---|---|---|---|
2/2 | 0.093 | 0.069 | 0.027 | 29.03% |
3/3 | 0.170 | 0.133 | 0.037 | 21.76% |
4/4 | 0.266 | 0.217 | 0.049 | 18.42% |
RL/PVP(g) | Wide (mm) | Thickness (mm) | Peak Load (N) | Tensile Strength (MPa) |
---|---|---|---|---|
0/3 | 10 | 1.63 × 10−2 | 0.251 | 1.540 |
2/2 | 10 | 7.339 × 10−3 | 0.686 | 9.347 |
3/3 | 10 | 2.002 × 10−2 | 0.889 | 4.441 |
4/4 | 10 | 3.475 × 10−2 | 1.125 | 3.2337 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Zhang, D.; Liu, M.; Lin, Q.; Shiu, B.-C. A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms. Nanomaterials 2020, 10, 1723. https://doi.org/10.3390/nano10091723
Wu K, Zhang D, Liu M, Lin Q, Shiu B-C. A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms. Nanomaterials. 2020; 10(9):1723. https://doi.org/10.3390/nano10091723
Chicago/Turabian StyleWu, Kunlin, Ding Zhang, Minghua Liu, Qi Lin, and Bing-Chiuan Shiu. 2020. "A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms" Nanomaterials 10, no. 9: 1723. https://doi.org/10.3390/nano10091723
APA StyleWu, K., Zhang, D., Liu, M., Lin, Q., & Shiu, B. -C. (2020). A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms. Nanomaterials, 10(9), 1723. https://doi.org/10.3390/nano10091723