Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, B.; Song, L.; Chen, F.; Qian, X.; Chen, Y.; Li, H. ReRAM-based accelerator for deep learning. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 815–820. [Google Scholar] [CrossRef]
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.-S.P. Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front. Neurosci. 2013, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Raymo, F.M. Digital processing and communication with molecular switches. Adv. Mater. 2002, 14, 401–414. [Google Scholar] [CrossRef]
- Gholipour, B.; Bastock, P.; Craig, C.; Khan, K.; Hewak, D.; Soci, C. Amorphous Metal-Sulphide Microfibers Enable Photonic Synapses for Brain-Like Computing. Adv. Opt. Mater. 2015, 3, 635–641. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, S.; Wong, H.S.P.; Chen, Y.S.; Lee, H.Y.; Wang, S.M.; Gu, P.Y.; Chen, F.; Tsai, M.J. AlOx-based resistive switching device with gradual resistance modulation for neuromorphic device application. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012; Volume 1. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Jeon, Y.R.; Kim, S.; Ku, B.; Choi, C. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Mater. 2019, 11, 5. [Google Scholar] [CrossRef]
- Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic. Nature 2019, 575, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Lim, S.; Woo, S.Y.; Kang, W.M.; Seo, Y.T.; Lee, S.T.; Lee, S.; Kwon, D.; Oh, S.; Noh, Y.; et al. Emerging memory technologies for neuromorphic computing. Nanotechnology 2019, 30, 32001. [Google Scholar] [CrossRef] [PubMed]
- Indiveri, G.; Liu, S.C. Memory and Information Processing in Neuromorphic Systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef] [Green Version]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K.; Kim, M.H.; Kim, T.H.; Bang, S.; Choi, Y.J.; Kim, S.; Cho, S.; Park, B.G. Synaptic behaviors of HfO 2 ReRAM by pulse frequency modulation. Solid. State. Electron. 2019, 154, 31–35. [Google Scholar] [CrossRef]
- Chen, W.-J.; Cheng, C.-H.; Lin, P.-E.; Tseng, Y.-T.; Chang, T.-C.; Chen, J.-S. Analog Resistive Switching and Synaptic Functions in WOx/TaOx Bilayer through Redox-Induced Trap-Controlled Conduction. ACS Appl. Electron. Mater. 2019, 1, 2422–2430. [Google Scholar] [CrossRef]
- Deuermeier, J.; Kiazadeh, A.; Klein, A.; Martins, R.; Fortunato, E. Multil-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device. Nanomaterials 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Kim, S. Pseudo-Interface Switching of a Two-Terminal TaOx/HfO2 Synaptic Device for Neuromorphic Applications. Nanotechnology 2020, 10, 1550. [Google Scholar]
- Salaoru, I.; Prodromakis, T.; Khiat, A.; Toumazou, C. Resistive switching of oxygen enhanced TiO2 thin-fim devices. Appl. Phys. Lett. 2013, 102, 013506. [Google Scholar] [CrossRef]
- Berdan, R.; Prodromakis, T.; Toumazou, C. High precision analogue memristor state tuning. Electron. Lett. 2012, 48, 1105–1107. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral-Lopez, A.; Ohata, A.; Morales, D.P.; Ruiz, F.G.; Godoy, A.; Rodriguez, N. Laser-Fabricated reduced graphene oxide memristors. Nanomaterials 2019, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Tominov, R.V.; Vakulov, Z.E.; Avilov, V.I.; Khakhulin, D.A.; Fedotov, A.A.; Zamburg, E.G.; Smirnov, V.A.; Ageev, O.A. Synthesis and memristor effect of a forming-free zno nanocrystalline films. Nanomaterials 2020, 10, 1007. [Google Scholar] [CrossRef]
- Kuzum, D.; Jeyasingh, R.G.D.; Yu, S.; Wong, H.S.P. Low-energy robust neuromorphic computation using synaptic devices. IEEE Trans. Electron Devices 2012, 59, 3489–3494. [Google Scholar] [CrossRef]
- Kaneko, Y.; Nishitani, Y.; Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron Devices 2014, 61, 2827–2833. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, K.; Kinoshita, K.; Noshiro, H.; Yamazaki, Y.; Iizuka, T.; Ito, Y.; Takahashi, A.; Okano, A.; Sato, Y.; Fukano, T.; et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 767–770. [Google Scholar] [CrossRef]
- Govoreanu, B.; Kar, G.S.; Chen, Y.Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Radu, I.P.; Goux, L.; Clima, S.; Degraeve, R.; et al. 10 × 10 nm 2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 729–732. [Google Scholar] [CrossRef]
- Kim, S.; Chang, Y.F.; Kim, M.H.; Bang, S.; Kim, T.H.; Chen, Y.C.; Lee, J.H.; Park, B.G. Ultralow power switching in a silicon-rich SiN: Y/SiNx double-layer resistive memory device. Phys. Chem. Chem. Phys. 2017, 19, 18988–18995. [Google Scholar] [CrossRef]
- Yang, R.; Terabe, K.; Liu, G.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J.K.; Aono, M. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano 2012, 6, 9515–9521. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Kim, M.H.; Kim, T.H.; Lee, D.K.; Kim, S.; Cho, S.; Park, B.G. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid. State. Electron. 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Xu, L.; Zhang, J.; Xu, X.; Sun, H.; Miao, X. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 2013, 3, 1619. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chen, J.; Chen, Y.C.; Kim, M.H.; Kim, H.; Kwon, M.W.; Hwang, S.; Ismail, M.; Li, Y.; Miao, X.S.; et al. Neuronal dynamics in HfOx/AlOy-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale 2019, 11, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory. ACM SIGARCH Comput. Archit. News 2016, 44, 27–39. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Chakraborty, I.; Jaiswal, A.; Saha, A.K.; Gupta, S.K.; Roy, K. Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 2020, 7, 021308. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H.-S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1800143. [Google Scholar] [CrossRef] [Green Version]
- Gale, E.; de Lacy Costello, B.; Adamatzky, A. Observation, characterization and modeling of memristor current spikes. Appl. Math. Inf. Sci. 2013, 7, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Tae Jang, J.; Ahn, G.; Sung-Jin, C.; Myong Kim, D.; Hwan Kim, D. Control of the boundary between the gradual and abrupt modulation of resistance in the schottky barrier tunneling-modulated amorphous indium-gallium-zinc-oxide memristors for neuromorphic computing. Electronics 2019, 8, 1087. [Google Scholar] [CrossRef] [Green Version]
- Mahata, C.; Lee, C.; An, Y.; Kim, M.H.; Bang, S.; Kim, C.S.; Ryu, J.H.; Kim, S.; Kim, H.; Park, B.G. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems. J. Alloys Compd. 2020, 826, 154434. [Google Scholar] [CrossRef]
- Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar] [CrossRef]
- Park, J.; Kwak, M.; Moon, K.; Woo, J.; Lee, D.; Hwang, H. TiOx-Based RRAM Synpase with 64-Levels of Conductance and Symmetric Conductance Change by Adoping a Hybrid Pulse Scheme for Neuromorphic Computing. IEEE Electron. Dev. Lett. 2016, 37, 1559–1562. [Google Scholar] [CrossRef]
- Bousoulas, P.; Asenov, P.; Karageorgiou, I.; Sakellaropoulos, D.; Stathopoulos, S. Engineering amorphous-crystalline interfaces in TiO2−x/TiO2−y-based bilayer structures for enhanced resistive switching and synaptic properties. J. Appl. Phys. 2016, 120, 154501. [Google Scholar] [CrossRef]
- Kim, S.; Cho, S.; Park, B.G. Fully Si compatible SiN resistive switching memory with large self-rectification ratio. AIP Adv. 2016, 6, 015021. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Kim, T.H.; Bang, S.; Cho, S.; Park, B.G. Nano-cone resistive memory for ultralow power opeartion. Nanotechnology 2017, 28, 125207. [Google Scholar] [CrossRef]
- Yu, M.; Fang, Y.; Wang, Z.; Pan, Y.; Cai, Y.; Huang, R. Self-selection effects and modulation of TaOx resistive swithing random access memory with bottom electrode of highly doped Si. J. Appl. Phys. 2016, 119, 195302. [Google Scholar] [CrossRef]
- Moon, K.; Fumarola, A.; Sidler, S.; Jang, J.; Narayanan, P.; Shelby, R.M.; Burr, G.W.; Hwang, H. Bidirectional Non-Filamentary RRAM as an Analog Neuromorphic Synapse, Part I: Al/Mo/Pr0.7Ca0.3MnO3 Material Improvements and Device Measurements. J. Electron. Dev. Soc. 2018, 6, 146–155. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxdide/metal nanodevcices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Mcdaniel, M.D.; Posada, A.; Demkov, A.A.; Ekerdt, A.A.; Yu, E.T. Highly Controllable and Stable Quantized Conductance and Resistive Switching Mechanism in Single-Crystal TiO2 Resistive Memory on Silicon. Nano Lett. 2014, 14, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chai, Z.; Zhang, W.D.; Zhang, J.F.; Marsland, J.; Govoreanu, B.; Degraeve, R.; Goux, L.; Kar, G.S. TDDB Mechanism in a-Si/TiO2 nonfilamentary RRAM Device. IEEE Trans. Electron. Dev. 2019, 66, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Kalita, H.; Chung, H.S.; Aina, O.; Jung, Y.; Roy, T. Electronic synapses with near-linear weight update using MoS2/graphene memristors. Appl. Phys. Lett. 2019, 115, 103104. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Shi, T.; Wei, J.; Cao, R.; Zhao, X.; Wu, Z.; Zhang, X.; Lu, J.; Xu, H.; et al. A Self-Rectification and Quasi-Linear Analogue Memristor for Artificial Neural Networks. IEEE Electron Device Lett. 2019, 40, 1407–1410. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Zhang, J.; Xu, L.; Wang, Q.; Sun, H.; Tong, H.; Cheng, X.; Miao, X. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 2014, 4, 4906. [Google Scholar] [CrossRef] [Green Version]
- Aluguri, R.; Kumar, D.; Simanjuntak, F.M.; Tseng, T.Y. One bipolar transistor selector—One resistive random access memory device for cross bar memory array. AIP. Adv. 2017, 4, 095118. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Samanta, S.; Maikap, S.; Rahaman, S.Z.; Cheng, H.M. Temerature-Dependent Non-linear Resistive Switching Characteristics and Mechanism Using a New W/WO3/WOx/W Structure. Nanoscale Res. Lett. 2016, 11, 389. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Kim, K.; Jung, K.H.; Sok, J.; Park, K. Properties of Resistive Switching in TiO2 Nanocluster-SiOx(x < 2) Matrix Structure. J. Semicond. Technol. Sci. 2018, 18, 108–114. [Google Scholar]
- Chad, U.; Huang, K.C.; Huang, C.Y.; Tseng, T.Y. Mechanism of Nonlinear Switching in HfO2-Based Crossbar RRAM With Inserting Large Bandgap Tunneling Barrier Layer. IEEE Trans. Electron. Dev 2015, 62, 3665–3670. [Google Scholar]
- Yan, X.; Zhou, Z.; Ding, B.; Zhao, J.; Zhang, Y. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C 2017, 5, 2259–2267. [Google Scholar] [CrossRef]
- Sassine, G.; Barbera, S.L.; Najjari, N.; Minvielle, M.; Dubourdieu, C.; Alibart, F. Interfacial versus filament resistive switching in TiO2 and HfO2 devices. J. Vac. Sci. Technol. B 2016, 34, 012202. [Google Scholar] [CrossRef]
- Ge, J.; Charker, M. Oxygen Vacancies Control Transition of Resistive Switching Mode in Single-Crystal TiO2 Memory Device. ACS Appl. Mater Interfaces 2017, 9, 16327–16334. [Google Scholar] [CrossRef] [PubMed]
- Michalas, L.; Stathopoulos, S.; Khiat, A.; Prodromakis, T. Conduction mechanisms at distinct resistive levels of Pt/TiO2−x/Pt memristors. Appl. Phys. Lett. 2018, 113, 143503. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.J.; Lee, M.H.; Kim, G.H.; Song, S.J.; Seok, J.Y.; Han, S.; Yoon, J.H.; Kim, K.M.; Hwang, C.S. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell. Nanotechnology 2012, 23, 185202. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.P.; Jang, J.S.; Rhu, H.; Yu, H.; You, B.Y.; Kim, C.S.; Kim, K.J.; Cho, Y.J.; Baik, S.; et al. In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices. Nanotechnology 2013, 24, 295202. [Google Scholar] [CrossRef] [Green Version]
- Biju, K.P.; Liu, X.; Bourim, E.M.; Kim, I.; Jung, S.; Siddik, M.; Lee, J.; Hwang, H. Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices. J. Phys. D: Appl. Phys. 2010, 43, 495104. [Google Scholar] [CrossRef]
Device Structure | Dielectric Deposition Method | Dielectric Thickness | Operation Voltage | Operation Current | Switching Type | Applications |
---|---|---|---|---|---|---|
Mo/TiOx/TiN [39] | RF sputtering | 15 nm | Set: 3 V Reset: −3 V | <1 μA | Interface | Non-volatile memory Neuromorphic |
Ti/TiO2−x/TiO2−y/Au [40] | RF magnetron sputtering | 45 nm | Set: 6 V Reset: −5 V | <100 μA | Interface | Non-volatile memory |
Pt/TiO2−x/TiO2/Pt [56] | Atomic layer deposition | 12 nm | Set: 2 V Reset: −2 V | <1 mA | Interface | Non-volatile memory Neuromorphic |
Ti/TiO2/Nb-SrTiO3 [57] | Epitaxy | 10 nm | Set: 2.5 V Reset: −1 V | <10 mA | Filamentary | Non-volatile memory |
Pt/TiO2−x/Pt [58] | Reactive sputtering | 5 nm | Set: 4 V Reset: −3.6 V | <1 mA | Interface | Non-volatile memory |
Pt/TiO2/Pt [59] | Atomic layer deposition | 15 nm | Set: −2 V Reset: < 2 V | <4 mA | Filamentary | Non-volatile memory |
Pt/TiOx/Pt [60] | Plasma enhanced atomic layer deposition | 7 nm | Set: 3 V Reset: 2.25 V | >1 mA | Filamentary | Non-volatile memory |
Pt/TiO2/W [61] | Sol-gel spin coating | >100 nm | Set: 1.25 V Reset: −1.25 V | >10 μA | Interface | Non-volatile memory |
Ti/TiO2/SiOx/Si [This work] | Reactive sputtering | 13 nm | Set: −3.5 V Reset: 4 V | <400 μA | Interface | Non-volatile memory Neuromorphic |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.; Kim, S. Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory. Nanomaterials 2020, 10, 1821. https://doi.org/10.3390/nano10091821
Cho H, Kim S. Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory. Nanomaterials. 2020; 10(9):1821. https://doi.org/10.3390/nano10091821
Chicago/Turabian StyleCho, Hyojong, and Sungjun Kim. 2020. "Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory" Nanomaterials 10, no. 9: 1821. https://doi.org/10.3390/nano10091821
APA StyleCho, H., & Kim, S. (2020). Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory. Nanomaterials, 10(9), 1821. https://doi.org/10.3390/nano10091821