Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.1.1. Synthesis of the Li-Rich NMC Core Cathode Material
2.1.2. Synthesis of the Coated Samples
2.2. Characterization of Materials
2.3. Electrochemical Measurements on the Pristine and Coated Samples
3. Results
3.1. Synthesis of the Li-Rich NMC Core Material
3.2. Coating of the SiO2Core
3.3. Coating of the Li-Rich NMC Core
3.4. Electrochemical Measurements on the Pristine and Coated Li-Rich NMCs
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Coating Deposition via Metal–Organic Chemical Vapor Deposition (MOCVD)
Appendix B. Comments on the Electrochemical Performance for Samples I, III, IV, and V
References
- Thackeray, M.M.; Kang, S.-H.; Johnson, C.S.; Vaughey, J.T.; Benedek, R.; Hackney, S.A. Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, X.; van Bommel, A.; Xia, X.; Dahn, J.R. Comparison of Li[Li1/9Ni1/3Mn5/9]O2, Li[Li1/5Ni1/5Mn3/5]O2, LiNi0.5Mn1.5O4, and LiNi2/3Mn1/3O2 as High Voltage Positive Electrode Materials. J. Electrochem. Soc. 2011, 158, A187–A191. [Google Scholar] [CrossRef]
- Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.P.; Vezin, H.; Sougrati, M.T.; Doublet, M.L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes. Nat. Mater. 2013, 12, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 2013, 160, A786–A792. [Google Scholar] [CrossRef]
- McCalla, E.; Abakumov, A.M.; Saubanère, M.; Foix, D.; Berg, E.J.; Rousse, G.; Doublet, M.-L.; Gonbeau, D.; Novák, P.; van Tendeloo, G.; et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015, 350, 1516–1521. [Google Scholar] [CrossRef]
- Oishi, M.; Yogi, C.; Watanabe, I.; Ohta, T.; Orikasa, Y.; Uchimoto, Y.; Ogumi, Z. Direct Observation of Reversible Charge Compensation by Oxygen Ion in Li-Rich Manganese Layered Oxide Positive Electrode Material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 2015, 276, 89–94. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Ménétrier, M.; Mannessiez, P.; Weill, F.; Delmas, C.; Belin, S. Operando X-Ray Absorption Study of the Redox Processes Involved Upon Cycling of the Li-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li Ion Batteries. J. Phys. Chem. C 2014, 118, 5700–5709. [Google Scholar] [CrossRef]
- Assat, G.; Iadecola, A.; Delacourt, C.; Dedryvère, R.; Tarascon, J.-M. Decoupling Cationic–Anionic Redox Processes in a Model Li-rich Cathode via Operando X-ray Absorption Spectroscopy. Chem. Mater. 2017, 29, 9714–9724. [Google Scholar] [CrossRef]
- Shimoda, K.; Minato, T.; Nakanishi, K.; Komatsu, H.; Matsunaga, T.; Tanida, H.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z. Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. J. Mater. Chem. A 2016, 4, 5909–5916. [Google Scholar] [CrossRef] [Green Version]
- Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J.-M. Fundamental interplays between bulk anionic and cationic redox that govern kinetics and thermodynamics of Li-rich cathodes. Nat. Commun. 2017, 8, 2219. [Google Scholar] [CrossRef]
- Hy, S.; Liu, H.; Zhang, M.; Qian, D.; Hwang, B.-J.; Meng, Y.S. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 2016, 9, 1931–1954. [Google Scholar] [CrossRef]
- Bettge, M.; Li, Y.; Gallagher, K.; Zhu, Y.; Wu, Q.; Lu, W.; Bloom, I.; Abraham, D.P. Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density. J. Electrochem. Soc. 2013, 160, A2046–A2055. [Google Scholar] [CrossRef]
- Gallagher, K.G.; Croy, J.R.; Balasubramanian, M.; Bettge, M.; Abraham, D.P.; Burrell, A.K.; Thackeray, M.M. Correlating Hysteresis and Voltage Fade in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes. Electrochem. Commun. 2013, 33, 96–98. [Google Scholar] [CrossRef]
- Croy, J.R.; Gallagher, K.G.; Balasubramanian, M.; Chen, Z.; Ren, Y.; Kim, D.; Kang, S.-H.; Dees, D.W.; Thackeray, M.M. Examining Hysteresis in Composite xLi2MnO3·(1–x)LiMO2 Cathode Structures. J. Phys. Chem. C 2013, 117, 6525–6536. [Google Scholar] [CrossRef]
- Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M.L.; Vezin, H.; Laisa, C.P.; Prakash, A.S.; et al. Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes. Nat. Mater. 2015, 14, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Fell, C.R.; Chi, M.; Meng, Y.S. Identifying Surface Structural Changes in Layered Li-Excess Nickel Manganese Oxides in High Voltage Lithium Ion Batteries: A Joint Experimental and Theoretical Study. Energy Environ. Sci. 2011, 4, 2223–2233. [Google Scholar] [CrossRef]
- Ito, A.; Shoda, K.; Sato, Y.; Hatano, M.; Horie, H.; Ohsawa, Y. Direct Observation of the Partial Formation of a Framework Structure for Li-Rich Layered Cathode Material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 Upon the First Charge and Discharge. J. Power Sources 2011, 196, 4785–4790. [Google Scholar] [CrossRef]
- Koga, H.; Croguennec, L.; Ménétrier, M.; Mannessiez, P.; Weill, F.; Delmas, C. Different Oxygen Redox Participation for Bulk and Surface: A Possible Global Explanation for the Cycling Mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 2013, 236, 250–258. [Google Scholar] [CrossRef]
- Castel, E.; Berg, E.J.; el Kazzi, M.; Novák, P.; Villevieille, C. Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries. Chem. Mater. 2014, 26, 5051–5057. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.-F.; Bourbon, C.; Patoux, S. First Evidence of Manganese–Nickel Segregation and Densification Upon Cycling in Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 2013, 13, 3857–3863. [Google Scholar] [CrossRef]
- Genevois, C.; Koga, H.; Croguennec, L.; Ménétrier, M.; Delmas, C.; Weill, F. Insight into the Atomic Structure of Cycled Lithium-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 Using HAADF-STEM and Electron Nanodiffraction. J. Phys. Chem. C 2015, 119, 75–83. [Google Scholar] [CrossRef]
- Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. Synthesis of Li-rich NMC: A comprehensive study. Chem. Mater. 2017, 29, 9923–9936. [Google Scholar] [CrossRef]
- Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S.-M.; Zhou, Y.; Amine, K.; Ehrlich, S.N.; Li, H.; Nam, K.-W.; et al. Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials. Adv. Energy Mater. 2014, 4, 1300950. [Google Scholar] [CrossRef]
- Konishi, H.; Hirano, T.; Takamatsu, D.; Gunji, A.; Feng, X.; Furutsuki, S. Origin of hysteresis between charge and discharge processes in lithium-rich layer-structured cathode material for lithium-ion battery. J. Power Sources 2015, 298, 144–149. [Google Scholar] [CrossRef]
- Urban, A.; Lee, J.; Ceder, G. The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes. Adv. Energy Mater. 2014, 4, 1400478. [Google Scholar] [CrossRef]
- Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science 2014, 343, 519–522. [Google Scholar] [CrossRef]
- Lin, F.; Markus, I.M.; Nordlund, D.; Weng, T.-C.; Asta, M.D.; Xin, H.L.; Doeff, M.M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529. [Google Scholar] [CrossRef]
- Bloom, I.; Trahey, L.; Abouimrane, A.; Belharouak, I.; Zhang, X.; Wu, Q.; Lu, W.; Abraham, D.P.; Bettge, M.; Elam, J.W.; et al. Effect of Interface Modifications on Voltage Fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 Cathode Materials. J. Power Sources 2014, 249, 509–514. [Google Scholar] [CrossRef]
- Jian, L.; Xueliang, S. Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition. Nanotechnology 2015, 26, 024001. [Google Scholar]
- Meng, X.; Yang, X.-Q.; Sun, X. Emerging Applications of Atomic Layer Deposition for Lithium-Ion Battery Studies. Adv. Mater. 2012, 24, 3589–3615. [Google Scholar] [CrossRef]
- Wang, X.; Yushin, G. Chemical Vapor Deposition and Atomic Layer Deposition for Advanced Lithium Ion Batteries and Supercapacitors. Energy Environ. Sci. 2015, 8, 1889–1904. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Banis, M.N.; Lushington, A.; Li, R.; Cai, M.; Sun, X. Atomic Layer Deposition of Solid-State Electrolyte Coated Cathode Materials with Superior High-Voltage Cycling Behavior for Lithium Ion Battery Application. Energy Environ. Sci. 2014, 7, 768–778. [Google Scholar] [CrossRef]
- Martha, S.K.; Nanda, J.; Kim, Y.; Unocic, R.R.; Pannala, S.; Dudney, N.J. Solid Electrolyte Coated High Voltage Layered-Layered Lithium-Rich Composite Cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J. Mater. Chem. A 2013, 1, 5587–5595. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Wu, Q.; Wan, N.; Pan, D.; Bai, Y. Improved Electrochemical and Thermal Performances of Layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 Via Li2ZrO3 Surface Modification. J. Power Sources 2015, 282, 378–384. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, W.; Trottier, J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C.M.; Goodenough, J.B.; et al. Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv. 2014, 4, 154–167. [Google Scholar] [CrossRef]
- Amatucci, G.; Tarascon, J.-M. Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries. J. Electrochem. Soc. 2002, 149, K31–K46. [Google Scholar] [CrossRef]
- Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. Preparation and Electrochemical Investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x = 0.5, 1) Cathode Materials for Secondary Lithium Batteries. J. Power Sources 1997, 68, 604–608. [Google Scholar] [CrossRef]
- Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J.R. Synthesis and Electrochemistry of LiNixMn2-xO4. J. Electrochem. Soc. 1997, 144, 205–213. [Google Scholar] [CrossRef]
- Ohzuku, T.; Takeda, S.; Iwanaga, M. Solid-State Redox Potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-Transition Metal) Having Spinel-Framework Structures: A Series of 5 Volt Materials for Advanced Lithium-Ion Batteries. J. Power Sources 1999, 81–82, 90–94. [Google Scholar] [CrossRef]
- Hong, S.-K.; Mho, S.-I.; Yeo, I.-H.; Kang, Y.; Kim, D.-W. Structural and Electrochemical Characteristics of Morphology-Controlled Li[Ni0.5Mn1.5]O4 Cathodes. Electrochim. Acta 2015, 156, 29–37. [Google Scholar] [CrossRef]
- Myung, S.-T.; Lee, K.-S.; Kim, D.-W.; Scrosati, B.; Sun, Y.-K. Spherical core-shell Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 spinels as high performance cathodes for lithium batteries. Energy Environ. Sci. 2011, 4, 935. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, L.; Su, Y.; Tan, J.; Bao, L.; Lu, Y.; Wang, J.; Chen, R.; Chen, S.; Wu, F. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. J. Mater. Chem. A 2017, 5, 24292. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, Y.; Lu, Y.; Su, Y.; Bao, L.; Li, N.; Li, Y.; Wang, J.; Chen, R.; Wu, F. Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. Appl. Mater. Interfaces 2017, 9, 8669–8678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, J.; Liang, J.; Yin, Y.; Zhang, J.; Yu, X.; Guo, Y. Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructred Spinel Li4Mn5O12 Coating. Adv. Mater. 2018, 30, 1801751. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-H.; Johnson, C.S.; Vaughey, J.T.; Amine, K.; Thackeray, M.M. The Effects of Acid Treatment on the Electrochemical Properties of 0.5Li2MnO3*0.5LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells. J. Electrochem. Soc. 2006, 153, A1186–A1192. [Google Scholar] [CrossRef]
- Veith, M. Molecular Precursors for (Nano) Materials—A One Step Strategy. Dalton Trans. 2002, 2405–2412. [Google Scholar] [CrossRef]
- Yoon, H.; Marchese, A.; Lautens, M. Carboiodination Catalyzed by Nickel. J. Am. Chem. Soc. 2018, 140, 10950–10954. [Google Scholar] [CrossRef]
- Navulla, A.; Huynh, L.; Wei, Z.; Filatov, A.S.; Dikarev, E.V. Volatile Single-Source Molecular Precursor for the Lithium Ion Battery Cathode. J. Am. Chem. Soc. 2012, 134, 5762–5765. [Google Scholar] [CrossRef]
- Han, H.; Wei, Z.; Filatov, A.S.; Carozza, J.C.; Alkan, M.; Rogachev, A.Y.; Shevtsov, A.; Abakumov, A.M.; Pak, C.; Shatruk, M.; et al. Three to tango requires a site-specific substitution: Heterotrimetallic molecular precursors for high-voltage rechargeable batteries. Chem. Sci. 2019, 10, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Kawai, H.; Nagata, M.; Tukamoto, H.; West, A.R. A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5 volts. J. Mater. Chem. 1998, 8, 837–839. [Google Scholar] [CrossRef]
- Bhaskar, A.; Bramnik, N.N.; Senyshyn, A.; Fuess, H.; Ehrenberg, H. Synthesis, Characterization, and Comparison of Electrochemical Properties of LiM0.5Mn1.5O4 (M = Fe, Co, Ni) at Different Temperatures. J. Electrochem. Soc. 2010, 157, A689–A695. [Google Scholar] [CrossRef]
- Bhaskar, A.; Mikhailova, D.; Kiziltas-Yavuz, N.; Nikolowski, K.; Oswald, S.; Bramnik, N.N.; Ehrenberg, H. 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Prog. Solid State Chem. 2014, 42, 128–148. [Google Scholar] [CrossRef]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014, 229, 345–352. [Google Scholar]
- Park, S.-H.; Oh, S.-W.; Yoon, C.-S.; Myung, S.-T.; Sun, Y.-K. LiNi0.5Mn1.5O4 Showing Reversible Phase Transition on 3 V Region. Electrochem. Solid-State Lett. 2005, 8, A163–A167. [Google Scholar]
- Seo, D.-H.; Lee1, J.; Urban, A.; Malik, R.; Kang, S.Y.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2005, 8, 692–697. [Google Scholar] [CrossRef]
- Pearce, P.E.; Perez, A.J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, M.A.; Tendeloo, G.V.; Doublet, M.L.; et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 2017, 16, 580–586. [Google Scholar] [CrossRef]
- Lua, Z.; Dahn, J.R. Understanding the Anomalous Capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J. Electrochem. Soc. 2002, 149, A815–A822. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.-F.; Canévet, E.; Daniel, L.; Patoux, S. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy. Chem. Mater. 2012, 24, 3558–3566. [Google Scholar] [CrossRef]
- Hong, J.; Lim, H.-D.; Lee, M.; Kim, S.-W.; Kim, H.; Oh, S.-T.; Chung, G.-C.; Kang, K. Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries. Chem. Mater. 2012, 24, 2692–2697. [Google Scholar] [CrossRef]
- Zheng, J.M.; Zhang, Z.R.; Wu, X.B.; Dong, Z.X.; Zhu, Z.; Yang, Y. The Effects of AlF3 Coating on the Performance of Li[ Li0.2Mn0.54Ni0.13Co0.13]O2 Positive Electrode Material for Lithium-Ion Battery. J. Electrochem. Soc. 2008, 155, A775–A782. [Google Scholar] [CrossRef]
- Song, B.; Liu, H.; Liu, Z.; Xiao, P.; Lai, M.O.; Lu, L. High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci. Rep. 2013, 3, 3094. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 2016, 7, 12108. [Google Scholar] [CrossRef] [PubMed]
- Shunmugasundaram, R.; Arumugam, R.S.; Harris, K.J.; Goward, G.R.; Dahn, J.R. A search for low irreversible capacity and high reversible capacity positive electrode materials in the Li-Ni-Mn-Co pseudo-quaternary system. Chem. Mater. 2016, 28, 55–66. [Google Scholar] [CrossRef]
- Yin, Z.-W.; Wu, Z.-G.; Deng, Y.-P.; Zhang, T.; Su, H.; Fang, J.-C.; Xu, B.-B.; Wang, J.-Q.; Li, J.-T.; Huang, L.; et al. A Synergistic Effect in a Composite Cathode Consisting of Spinel and Layered Structures To Increase the Electrochemical Performance for Li-Ion Batteries. J. Phys. Chem. C 2016, 120, 25647–25656. [Google Scholar] [CrossRef]
- Lee, E.-S.; Huq, A.; Chang, H.-Y.; Manthiram, A. High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries. Chem. Mater. 2012, 24, 600–612. [Google Scholar] [CrossRef]
- Lee, E.-S.; Huq, A.; Manthiram, A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries. J. Power Sources 2013, 240, 193–203. [Google Scholar] [CrossRef]
- Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D.R.; Zhang, J.-G.; et al. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano 2013, 7, 760–767. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, C.; Yang, J.; Li, Z.; Allard, L.F.; Liang, C.; Chi, M. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. J. Mater. Chem. A 2015, 3, 5385–5391. [Google Scholar] [CrossRef]
- Mohanty, D.; Li, J.; Abraham, D.P.; Huq, A.; Payzant, E.A.; Wood, D.L., III; Daniel, C. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion. Chem. Mater. 2014, 26, 6272–6280. [Google Scholar] [CrossRef]
- Lee, E.-S.; Manthiram, A. Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A 2014, 2, 3932–3939. [Google Scholar] [CrossRef]
- Fell, C.R.; Qian, D.; Carroll, K.J.; Chi, M.; Jones, J.L.; Meng, Y.S. Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle. Chem. Mater. 2013, 25, 1621–1629. [Google Scholar] [CrossRef]
Sample | I | II | III | IV | V |
---|---|---|---|---|---|
Conditions | Medium [c] 350 °C | Low [c] 400 °C | Medium [c] 400 °C | High [c] 400 °C | Low [c] 450 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevtsov, A.; Han, H.; Morozov, A.; Carozza, J.C.; Savina, A.A.; Shakhova, I.; Khasanova, N.R.; Antipov, E.V.; Dikarev, E.V.; Abakumov, A.M. Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach. Nanomaterials 2020, 10, 1870. https://doi.org/10.3390/nano10091870
Shevtsov A, Han H, Morozov A, Carozza JC, Savina AA, Shakhova I, Khasanova NR, Antipov EV, Dikarev EV, Abakumov AM. Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach. Nanomaterials. 2020; 10(9):1870. https://doi.org/10.3390/nano10091870
Chicago/Turabian StyleShevtsov, Andrey, Haixiang Han, Anatolii Morozov, Jesse C. Carozza, Aleksandra A. Savina, Iaroslava Shakhova, Nellie R. Khasanova, Evgeny V. Antipov, Evgeny V. Dikarev, and Artem M. Abakumov. 2020. "Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach" Nanomaterials 10, no. 9: 1870. https://doi.org/10.3390/nano10091870
APA StyleShevtsov, A., Han, H., Morozov, A., Carozza, J. C., Savina, A. A., Shakhova, I., Khasanova, N. R., Antipov, E. V., Dikarev, E. V., & Abakumov, A. M. (2020). Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach. Nanomaterials, 10(9), 1870. https://doi.org/10.3390/nano10091870