Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tandem Structures Films Based on Metal Oxides
- (1)
- Sample ZnO_SnO2 (2:1) with a mass ratio between ZnO and SnO2 of 2:1;
- (2)
- Sample ZnO_SnO2 (1:2) with a mass ratio between ZnO and SnO2 of 1:2;
- (3)
- Sample TiO2_SnO2 (2:1) with a mass ratio between TiO2 and SnO2 of 2:1;
- (4)
- Sample TiO2_SnO2 (1:2) with a mass ratio between TiO2 and SnO2 of 1:2.
2.2. Photocatalytic Procedures
2.3. Investigation Instruments
3. Results and Discussion
3.1. Composition and Morphology
3.2. Photocatalytic Activity
3.2.1. Photocatalytic Efficiencies and Kinetics
3.2.2. Photocatalytic Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milenković, D.A.; Dimić, D.S.; Marković, Z.S. Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chem. Eng. J. 2020, 395, 124971. [Google Scholar] [CrossRef]
- Na, S.; Seo, S.; Lee, H. Recent developments of advanced Ti3+-self-doped TiO2 for efficient visible-light-driven photocatalysis. Catalysts 2020, 10, 679. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Younes, N.; Al-Jamal, O.; Zakaria, Z.Z.; Najjar, H.; Alserr, F.; Pintus, G.; Al-Asmakh, M.; Abdullah, A.M.; Nasrallah, G.K. Ecotoxicological assessment of thermally- and hydrogen-reduced graphene oxide/TiO2 photocatalytic nanocomposites using the zebrafish embryo model. Nanomaterials 2019, 9, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Han, B.; Lou, Y.; Liu, Z.; Qian, G.; Wang, Z. Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis. Int. J. Hydrog. Energy 2020, 45, 28640–28650. [Google Scholar] [CrossRef]
- Li, L.; Zheng, X.; Chi, Y.; Wang, Y.; Sun, X.; Yue, Q.; Gao, B.; Xu, S. Molecularly imprinted carbon nanosheets supported TiO2: Strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. J. Hazard. Mater. 2020, 383, 121211. [Google Scholar] [CrossRef]
- Periyasamy, M.; Saha, A.; Sain, S.; Mandal, M.; Sengupta, U.; Kar, A. A comparative structural and photocatalytic study on SnO2 nanoparticles fabricated in batch reactor and microreactor. J. Environ. Chem. Eng. 2020, 8, 104604. [Google Scholar] [CrossRef]
- Enesca, A.; Duta, A. The influence of organic additives on the morphologic and crystalline properties of SnO2 obtained by spray pyrolysis deposition. Thin Solid Films 2011, 519, 5780–5786. [Google Scholar] [CrossRef]
- Cai, X.; Huang, Y.; Hu, J.; Zhu, S.; Tian, X.; Zhang, K.; Ji, G.; Zhang, Y.; Fu, Z.; Tan, C. Tuning photocatalytic performance of multilayer ZnO for water splitting by biaxial strain composites. Catalysts 2020, 10, 1208. [Google Scholar] [CrossRef]
- Hernández-Carrillo, M.; Torres-Ricárdez, R.; García-Mendoza, M.; Ramírez-Morales, E.; Rojas-Blanco, L.; Díaz-Flores, L.; Sepúlveda-Palacios, G.; Paraguay-Delgado, F.; Pérez-Hernández, G. Eu-modified ZnO nanoparticles for applications in photocatalysis. Catal. Today 2020, 349, 191–197. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Xia, M.; An, H.; Bai, H.; Wei, J.; Yang, B.; Yang, G. Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis. Appl. Catal. B Environ. 2020, 261, 118244. [Google Scholar] [CrossRef]
- Gao, X.; Niu, J.; Wang, Y.; Ji, Y.; Zhang, Y. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites. J. Hazard. Mater. 2021, 403, 123860. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Wu, K.L.; Dong, C.; Xia, S.H.; Ye, Y.; Wei, X. Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation. Mater. Lett. 2014, 130, 97–100. [Google Scholar] [CrossRef]
- Nyankson, E.; Kumar, R. Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes. Mater. Today Adv. 2019, 4, 100025. [Google Scholar] [CrossRef]
- Naciri, Y.; Hsini, A.; Ajmal, Z.; Navío, J.A.; Bakiz, B.; Albourine, A.; Ezahri, M.; Benlhachemi, A. Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials. Adv. Colloid Interface Sci. 2020, 280, 102160. [Google Scholar] [CrossRef] [PubMed]
- Koutavarapu, R.; Tamtam, M.R.; Rao, M.C.; Cho, M.; Shim, J. Enhanced solar-light-driven photocatalytic properties of novel Z-scheme binary BiPO4 nanorods anchored onto NiFe2O4 nanoplates: Efficient removal of toxic organic pollutants. J. Environ. Sci. 2021, 102, 326–340. [Google Scholar] [CrossRef]
- Todorova, N.; Papailias, I.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Dallas, P.; Edelmannová, M.; Reli, M.; Kočí, K.; Trapalis, C. Photocatalytic H2 evolution, CO2 reduction, and NOx oxidation by highly exfoliated g-C3N4. Catalysts 2020, 10, 1147. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloy. Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Desseigne, M.; Dirany, N.; Chevallier, V.; Arab, M. Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation. Appl. Surf. Sci. 2019, 483, 313–323. [Google Scholar] [CrossRef]
- Xu, X.; Liu, S.; Cui, Y.; Wang, X.; Smith, K.; Wang, Y. Solar-driven removal of 1,4-dioxane using WO3/nγ-Al2O3 nano-catalyst in water. Catalysts 2019, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Garg, S.; Chandra, A.; Hernadi, K. Immobilization of green BiOX (X = Cl, Br and I) photocatalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process. Ceram. Int. 2019, 45, 17715–17722. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.-R.; Chen, L.; Guo, J.; Shen, S.; Au, C.T.; Yin, S.F.; Cai, M.Q. Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action. Appl. Surf. Sci. 2019, 492, 157–165. [Google Scholar] [CrossRef]
- Kumari, P.; Bahadur, N.; O’Dell, L.A.; Kong, L.; Sadek, A.; Merenda, A.; Dumée, L.F. Nanoscale 2D semi-conductors—Impact of structural properties on light propagation depth and photocatalytic performance. Sep. Purif. Technol. 2021, 258, 118011. [Google Scholar] [CrossRef]
- Wu, J.; Wang, W.; Tian, Y.; Song, C.; Qiu, H.; Xue, H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants. Nano Energy 2020, 77, 105122. [Google Scholar] [CrossRef]
- Xue, J.; Lei, D.; Bi, Q.; Tang, C.; Zhang, L. Enhancing photocatalytic performance of Zn2SnO4 by doping Yb: Oxygen vacancies formation and dye self-sensitization degradation. Opt. Mater. 2020, 108, 110454. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, J.; Qin, Y.; Song, F.; Du, C.; Su, Y. Direct Z-scheme SnO2/Bi2Sn2O7 photocatalyst for antibiotics removal: Insight on the enhanced photocatalytic performance and promoted charge separation mechanism. J. Photochem. Photobiol. A Chem. 2021, 404, 112947. [Google Scholar] [CrossRef]
- Lin, Y.; Pan, D.; Luo, H. Hollow direct Z‒Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process. 2021, 121, 105453. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Fang, Q.; Chen, X.; Liu, T.; Zhang, M. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum 2020, 174, 109198. [Google Scholar] [CrossRef]
- Krawczyk, K.; Wacławek, S.; Kudlek, E.; Silvestri, D.; Kukulski, T.; Grübel, K.; Padil, V.V.; Cernik, M. UV-catalyzed persulfate oxidation of an anthraquinone based dye. Catalysts 2020, 10, 456. [Google Scholar] [CrossRef] [Green Version]
- Bansal, P.; Verma, A.; Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 2018, 349, 838–848. [Google Scholar] [CrossRef]
- Bonora, R.; Boaretti, C.; Campea, L.; Roso, M.; Martucci, A.; Modesti, M.; Lorenzetti, A. Combined AOPs for formaldehyde degradation using heterogeneous nanostructured catalysts. Nanomaterials 2020, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100290. [Google Scholar] [CrossRef]
- Mouchaal, Y.; Enesca, A.; Mihoreanu, C.; Khelil, A.; Duta, A. Tuning the opto-electrical properties of SnO2 thin films by Ag+1 and In+3 co-doping. Mater. Sci. Eng. B 2015, 199, 22–29. [Google Scholar] [CrossRef]
- Kaplan, A.; Mamane, H.; Lester, Y.; Avisar, D. Trace organic compound removal from wastewater reverse-osmosis concentrate by advanced oxidation processes with UV/O3/H2O2. Materials 2020, 13, 2785. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Koziel, J.A.; Laor, Y.; Zhu, W.; van Leeuwen, J.H.; Jenks, W.S.; Hoff, S.J.; Zimmerman, J.; Zhang, S.; Ravid, U.; et al. VOC removal from manure gaseous emissions with UV photolysis and UV-TiO2 photocatalysis. Catalysts 2020, 10, 607. [Google Scholar] [CrossRef]
- He, X.; Wu, M.; Ao, Z.; Lai, B.; Zhou, Y.; An, T.; Wang, S. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. J. Hazard. Mater. 2021, 403, 124048. [Google Scholar] [CrossRef] [PubMed]
- Saoud, W.A.; Assadi, A.A.; Guiza, M.; Bouzaza, A.; Aboussaoud, W.; Ouederni, A.; Soutrel, I.; Wolbert, D.; Rtimi, S. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Appl. Catal. B Environ. 2017, 213, 53–61. [Google Scholar] [CrossRef]
- Franz, S.; Falletta, E.; Arab, H.; Murgolo, S.; Bestetti, M.; Mascolo, G. Degradation of carbamazepine by photo(electro)catalysis on nanostructured TiO2 meshes: Transformation products and reaction pathways. Catalysts 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Mamane, H.; Avisar, D.; Gozlan, I.; Kaplan, A.; Dayalan, G. Treatment of diethyl phthalate leached from plastic products in municipal solid waste using an ozone-based advanced oxidation process. Materials 2019, 12, 4119. [Google Scholar] [CrossRef] [PubMed]
- De Richter, R.; Ming, T.; Davies, P.L.; Liu, W.; Caillol, S. Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis. Prog. Energy Combust. Sci. 2017, 60, 68–96. [Google Scholar] [CrossRef]
- Ojha, D.P.; Song, J.H.; Kim, H.J. Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds. J. Environ. Sci. 2019, 79, 35–42. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Z.; Feng, Y.; Lin, S.; Li, H.; Gao, X. Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface. Appl. Catal. B Environ. 2020, 268, 118740. [Google Scholar] [CrossRef]
- Li-Hong, B.; Yang, F.; Cheng, D.; Pan, X.; Zhang, H.; Zhao, F.; Zhao, S.; Tegus, O. Modified electronic structure of Ta2O5 via surface decorated with Ta3B2 nanodots for enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 513, 145767. [Google Scholar] [CrossRef]
- Tian, Q.; Fang, G.; Ding, L.; Ran, M.; Zhang, H.; Pan, A.; Shen, K.; Deng, Y. ZnAl2O4/Bi2MoO6 heterostructures with enhanced photocatalytic activity for the treatment of organic pollutants and eucalyptus chemimechanical pulp wastewater. Mater. Chem. Phys. 2020, 241, 122299. [Google Scholar] [CrossRef]
- Giovannetti, R.; Rommozzi, E.; D’Amato, C.A.; Zannotti, M. Kinetic model for simultaneous adsorption/photodegradation process of alizarin red S in water solution by nano-TiO2 under visible light. Catalysts 2016, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Losch, P.; Huang, W.; Goodman, E.D.; Wrasman, C.J.; Holm, A.; Riscoe, A.R.; Schwalbe, J.A.; Cargnello, M. Colloidal nanocrystals for heterogeneous catalysis. Nano Today 2019, 24, 15–47. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2016, 474, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today 2016, 266, 175–187. [Google Scholar] [CrossRef]
- Libralato, G.; Lofrano, G.; Siciliano, A.; Gambino, E.; Boccia, G.; Federica, C.; Francesco, A.; Galdiero, E.; Gesuele, R.; Guida, M. Toxicity assessment of wastewater after advanced oxidation processes for emerging contaminants’ degradation. In Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants, 1st ed.; Sacco, O., Vaiano, V., Eds.; Elsevier: New York, NY, USA, 2020; pp. 195–211. [Google Scholar]
- Berberidou, C.; Kitsiou, V.; Poulios, I. Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. J. Environ. Manag. 2017, 195, 133–139. [Google Scholar] [CrossRef]
- Rozman, K.K.; Doull, J.; Hayes, W.J. Dose, time, and other factors influencing toxicity. In Handbook of Pesticide Toxicology, 2nd ed.; Krieger, R.I., Krieger, W.C., Eds.; Academic Press: New York, NY, USA, 2001; pp. 1–93. [Google Scholar]
- Hodgson, E. Metabolic interactions of pesticides. In Pesticide Biotransformation and Disposition, 1st ed.; Hodgson, E., Ed.; Academic Press: New York, NY, USA, 2012; pp. 149–178. [Google Scholar]
- Puma, L.G.; Puddu, V.; Toepfer, B. Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17βestradiol(E2), 17α-ethynylestradion (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorption. Appl. Catal. B 2010, 99, 388–397. [Google Scholar]
- Bhavsar, K.; Labhane, P.; Huse, V.; Dhake, R.; Sonawane, G. Activated carbon immobilized WO3 nanocuboids: Adsorption/photocatalysis synergy for the enhanced removal of organic pollutants. Inorg. Chem. Commun. 2020, 121, 108215. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, I. Halide perovskite-based photocatalysis systems for solar-driven fuel generation. Sol. Energy 2020, 208, 296–311. [Google Scholar] [CrossRef]
- Nowak, A.P.; Trzciński, K.; Szkoda, M.; Karczewski, J.; Gazda, M.; Lisowska-Oleksiak, A. A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix. Synth. Met. 2019, 257, 116168. [Google Scholar] [CrossRef]
- Giovannetti, R.; D’Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2016, 5, 17801. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. 3D-2D-3D BiOI/porous g-C3N4/graphene hydrogel composite photocatalyst with synergy of adsorption-photocatalysis in static and flow systems. J. Alloy. Compd. 2021, 850, 156778. [Google Scholar] [CrossRef]
- Nefzi, C.; Souli, M.; Cuminal, Y.; Kamoun-Turki, N. Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications. Mater. Sci. Eng. B 2020, 254, 114509. [Google Scholar] [CrossRef]
- Dudita, M.; Bogatu, C.; Enesca, A.; Duta, A. The influence of the additives composition and concentration on the properties of SnOx thin films used in photocatalysis. Mater. Lett. 2011, 65, 2185–2189. [Google Scholar] [CrossRef]
- Enesca, A.; Andronic, L.; Duta, A. The influence of surfactants on the crystalline structure, electrical and photocatalytic properties of hybrid multi-structured (SnO2, TiO2 and WO3) thin films. Appl. Surf. Sci. 2012, 258, 4339–4346. [Google Scholar] [CrossRef]
- Pedanekar, R.; Shaikh, S.; Rajpure, K. Thin film photocatalysis for environmental remediation: A status review. Curr. Appl. Phys. 2020, 20, 931–952. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Q.; Lan, R.; Jiang, R.; Quan, X.; Xu, B.; Zhang, F.; Jia, Y. Effect of Anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 2015, 31, 1059–1064. [Google Scholar] [CrossRef]
- Abazari, R.; Sanati, S.; Saghatforoush, L.A. A unique and facile preparation of lanthanum ferrite nanoparticles in emulsion nanoreactors: Morphology, structure, and efficient photocatalysis. Mater. Sci. Semicond. Process. 2014, 25, 301–306. [Google Scholar] [CrossRef]
- Liang, H.; Li, T.; Liu, H. 3-D hierarchical Ag/ZnO@CF for synergistically removing phenol and Cr(VI): Heterogeneous vs. homogeneous photocatalysis. J. Colloid. Interf. Sci. 2020, 558, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Zhu, Y.; Hu, Z.; Zhang, J.; Liu, D.; Luo, X.; Gao, M.; Lei, L.; Wang, X.; Zhao, G. Micro-patterned NiFe2O4/Fe–TiO2 composite films: Fabrication, hydrophilicity and application in visible-light-driven photocatalysis. Ceram. Int. 2020, 46, 27080–27091. [Google Scholar] [CrossRef]
- Momeni, M.; Saghafian, H.; Golestani-Fard, F.; Barati, N.; Khanahmadi, A. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method. Appl. Surf. Sci. 2017, 392, 80–87. [Google Scholar] [CrossRef]
- Pinto, M.; Salgado, R.; Laia, C.A.T.; Cooper, W.J.; Sontag, G.; Burrows, H.D.; Branco, L.C.; Vale, C.; Noronha, J. The effect of chloride ions and organic matter on the photodegradation of acetamiprid in saline waters. J. Photochem. Photobiol. A Chem. 2018, 360, 117–124. [Google Scholar] [CrossRef]
- Duta, A.; Enesca, A.; Bogatu, C.; Gyorgy, E. Solar-active photocatalytic tandems. A compromise in the photocatalytic processes design. Mater. Sci. Semicond. Process. 2016, 42, 94–97. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Duta, A. Charge carriers injection in tandem semiconductors for dyes mineralization. Appl. Catal. B Environ. 2015, 162, 352–363. [Google Scholar] [CrossRef]
- Gao, S.P. Crystal structures and band gap characters of h-BN polytypes predicted by the dispersion corrected DFT and GW method. Solid State Commun. 2012, 152, 1817–1820. [Google Scholar] [CrossRef]
- Mise, T.; Nakada, T. Low temperature growth and properties of Cu–In–Te based thin films for narrow bandgap solar cells. Thin Solid Films 2010, 518, 5604–5609. [Google Scholar] [CrossRef]
- Carvalho, K.T.G.; Lopes, O.F.; Ribeirox, C. ZnO:ZnWO4 heterostructure with enhanced photocatalytic activity for pollutant degradation in liquid and gas phases. J. Alloy. Compound. 2019, 797, 1299–1309. [Google Scholar] [CrossRef]
- Testoni, G.O.; Amoresi, R.A.C.; Perazollix, L.A. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films. Solid State Sci. 2018, 76, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Dostanić, J.; Lončarević, D.R.; Đorđević, V.; Ahrenkiel, S.P.; Nedeljković, J.M. The photocatalytic performance of silver halides—Silver carbonate heterostructures. J. Photochem. Photobiol. A Chem. 2017, 336, 1–7. [Google Scholar] [CrossRef]
- Nazim, S.; Kousar, T.; Warsi, M.F. New graphene-CoxZn1−xFe2O4 nano-heterostructures: Magnetically separable visible light photocatalytic materials. Ceram. Int. 2016, 42, 7647–7654. [Google Scholar] [CrossRef]
- Baneto, M.; Enesca, A.; Mihoreanu, C.; Lare, Y.; Jondo, K.; Napo, K.; Duta, A. Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceram. Int. 2015, 41, 4742–4749. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef] [PubMed]
Irradiation Sources | UV (310–390 nm) | Vis (400–800 nm) | Total Irradiance (W/m2) | Φ [μmol/(m2·s)] |
---|---|---|---|---|
UV light | 3 | 0 | 12.6 | 24.83 |
UV-Vis light | 2 | 1 | 13.8 | 46.10 |
Vis light | 0 | 3 | 17.3 | 68.42 |
Components | Elemental Composition [% at] | ||||
---|---|---|---|---|---|
Zn | Ti | Sn | O | Oth 1 | |
ZnO_SnO2 (2:1) | 28.8 | - | 12.6 | 56.3 | 54.0 |
ZnO_SnO2 (1:2) | 13.8 | - | 22.5 | 61.7 | 58.8 |
TiO2_SnO2 (2:1) | - | 19.3 | 12.1 | 65.9 | 62.8 |
TiO2_SnO2 (1:2) | - | 10.7 | 21.3 | 66.2 | 64.0 |
Properties | ZnO | SnO2 | TiO2 | ZnO_SnO2 (2:1) | ZnO_SnO2 (1:2) | TiO2_SnO2 (2:1) | TiO2_SnO2 (1:2) |
---|---|---|---|---|---|---|---|
Thickness [μm] 1 | 2.63 | 2.41 | 1.88 | 3.27 | 3.52 | 2.13 | 2.61 |
Volume [cm3] | 18.07 × 10−5 | 17.84 × 10−5 | 14.62 × 10−5 | 23.68 × 10−5 | 28.17 × 10−5 | 16.51 × 10−5 | 18.33 × 10−5 |
Density [g/cm3] | 6.4 | 6.2 | 4.9 | 7.1 | 6.3 | 5.4 | 6.5 |
Weight [g] | 1.15 × 10−3 | 1.10 × 10−3 | 7.16 × 10−4 | 1.68 × 10−3 | 1.77 × 10−3 | 8.91 × 10−4 | 1.19 × 10−3 |
Kinetic Data | ZnO_SnO2 (2:1) | ZnO_SnO2 (1:2) | TiO2_SnO2 (2:1) | TiO2_SnO2 (1:2) | ZnO | SnO2 | TiO2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k [s−1] | R2 | k [s−1] | R2 | k [s−1] | R2 | k [s−1] | R2 | k [s−1] | R2 | k [s−1] | R2 | k [s−1] | R2 | |
Tr | ||||||||||||||
UV | 0.1731 | 0.9972 | 0.1340 | 0.9922 | 0.2724 | 0.9495 | 0.1997 | 0.9709 | 0.1169 | 0.9885 | 0.0571 | 0.9927 | 0.1790 | 0.9771 |
UV-Vis | 0.1240 | 0.9898 | 0.0976 | 0.9927 | 0.1728 | 0.9724 | 0.1392 | 0.9842 | 0.0794 | 0.0016 | 0.0257 | 0.9940 | 0.1187 | 0.9870 |
Vis | 0.0153 | 0.9962 | 0.0104 | 0.9840 | 0.0097 | 0.9910 | 0.0086 | 0.9938 | - | - | - | - | - | - |
Adp | ||||||||||||||
UV | 0.0844 | 0.9987 | 0.0582 | 0.9979 | 0.1030 | 0.9910 | 0.0804 | 0.9904 | 0.0462 | 0.9989 | 0.0228 | 0.9959 | 0.0678 | 0.9950 |
UV-Vis | 0.0291 | 0.9954 | 0.0214 | 0.9962 | 0.0624 | 0.9949 | 0.0406 | 0.9954 | 0.0252 | 0.9968 | 0.0139 | 0.9977 | 0.0340 | 0.9938 |
Vis | 0.0199 | 0.9942 | 0.0092 | 0.9943 | 0.0063 | 0.9456 | 0.0063 | 0.9456 | - | - | - | - | - | - |
Tandem Structure, Pollutant | kr·108 (mol/L·min) | KS (mol/L) |
---|---|---|
ZnO/SnO2 (2:1), Tr | 4.13 | 163,392.4 |
ZnO/SnO2 (2:1), Apd | 2.44 | 105,831.8 |
ZnO/SnO2 (1:2), Tr | 1.83 | 95,273.5 |
ZnO/SnO2 (1:2), Apd | 1.38 | 48,527.9 |
TiO2/SnO2 (2:1), Tr | 5.28 | 294,772.3 |
TiO2/SnO2 (2:1), Apd | 3.71 | 149,934.0 |
TiO2/SnO2 (1:2), Tr | 5.14 | 263,972.6 |
TiO2/SnO2 (1:2), Apd | 3.53 | 135,729.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enesca, A.; Isac, L. Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal. Nanomaterials 2021, 11, 200. https://doi.org/10.3390/nano11010200
Enesca A, Isac L. Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal. Nanomaterials. 2021; 11(1):200. https://doi.org/10.3390/nano11010200
Chicago/Turabian StyleEnesca, Alexandru, and Luminita Isac. 2021. "Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal" Nanomaterials 11, no. 1: 200. https://doi.org/10.3390/nano11010200
APA StyleEnesca, A., & Isac, L. (2021). Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal. Nanomaterials, 11(1), 200. https://doi.org/10.3390/nano11010200