Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells
Abstract
:1. Introduction
2. Theory
3. Results and Discussions
3.1. Test of Simulation
3.2. Electric Field and Exciton Generation Rate Distributions in OSC1
3.3. Influence of Other Layers on Exciton Generation Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S. Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Part. Sci. Technol. 2013, 31, 427–442. [Google Scholar] [CrossRef]
- Platts, S.P.G. BP Statistical Review of World Energy; 1 St James’s Square London SW1Y 4PD Natural Gas: London, UK, 2019; p. 64. [Google Scholar]
- Ram, K.S.; Singh, J. Over 20% Efficient and Stable Non-Fullerene-Based Ternary Bulk-Heterojunction Organic Solar Cell with WS 2 Hole-Transport Layer and Graded Refractive Index Antireflection Coating. Adv. Theory Simul. 2020, 3, 2000047. [Google Scholar] [CrossRef]
- Blakers, A.; Zin, N.; McIntosh, K.R.; Fong, K. High Efficiency Silicon Solar Cells. Energy Procedia 2013, 33, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 12482–12515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Dennler, G.; Sariciftci, N.S. Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications. Proc. IEEE 2005, 93, 1429–1439. [Google Scholar] [CrossRef]
- Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing Highly Efficient Organic Solar Cells. Nano Lett. 2008, 8, 2806–2813. [Google Scholar] [CrossRef] [Green Version]
- Sondergaard, R.R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Ram, K.S.; Singh, J. Highly Efficient and Stable Solar Cells with Hybrid of Nanostructures and Bulk Heterojunction Organic Semiconductors. Adv. Theory Simul. 2019, 2, 1900030. [Google Scholar] [CrossRef]
- Karakawa, M.; Suzuki, K.; Kuwabara, T.; Taima, T.; Nagai, K.; Nakano, M.; Yamaguchi, T.; Takahashi, K. Factors contributing to degradation of organic photovoltaic cells. Org. Electron. 2020, 76, 105448. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in Stability of Organic Solar Cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, M.; Singh, J. Photovoltaic contribution of photo-generated excitons in acceptor material of organic solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 7070–7076. [Google Scholar] [CrossRef]
- Bernède, J.C. Organic photovoltaic cells: History, principle and techniques. J. Chil. Chem. Soc. 2008, 53, 1549–1564. [Google Scholar] [CrossRef] [Green Version]
- Vithanage, D.A.; Devižis, A.; Abramavicius, D.; Infahsaeng, Y.; MacKenzie, R.C.I.; Keivanidis, P.E.; Yartsev, A.; Hertel, D.; Nelson, J.; Sundström, V.; et al. Visualizing charge separation in bulk heterojunction organic solar cells. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Xie, B.; Duan, C.; Wang, Z.; Fan, B.; Zhang, K.; Lin, B.; Colberts, F.J.M.; Ma, W.; Janssen, R.A.J.; et al. A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 2018, 6, 395–403. [Google Scholar] [CrossRef]
- Roncali, J. Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells. Accounts Chem. Res. 2009, 42, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Kippelen, B.; Brédas, J. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Brédas, J.; Norton, J.E.; Cornil, J.; Coropceanu, V. Molecular Understanding of Organic Solar Cells: The Challenges. Accounts Chem. Res. 2009, 42, 1691–1699. [Google Scholar] [CrossRef]
- Ono, S.; Ohno, K. Origin of Charge Transfer Exciton Dissociation in Organic Solar Cells. In Excitons; Pyshkin, S., Ed.; Intech Open: London, UK, 2018. [Google Scholar]
- Narayan, M.R.; Singh, J. Study of the mechanism and rate of exciton dissociation at the donor-acceptor interface in bulk-heterojunction organic solar cells. J. Appl. Phys. 2013, 114, 073510. [Google Scholar] [CrossRef] [Green Version]
- Vollbrecht, J.; Brus, V.V.; Ko, S.; Lee, J.; Karki, A.; Cao, D.X.; Cho, K.; Bazan, G.C.; Nguyen, T. Quantifying the Nongeminate Recombination Dynamics in Nonfullerene Bulk Heterojunction Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1901438. [Google Scholar] [CrossRef]
- Mohajeri, A.; Omidvar, A. Fullerene-based materials for solar cell applications: Design of novel acceptors for efficient polymer solar cells—A DFT study. Phys. Chem. Chem. Phys. 2015, 17, 22367–22376. [Google Scholar] [CrossRef] [PubMed]
- Ganesamoorthy, R.; Sathiyan, G.; Sakthivel, P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol. Energy Mater. Sol. Cells 2017, 161, 102–148. [Google Scholar] [CrossRef]
- Rad, H.M.; Zhu, F.; Singh, J. Profiling exciton generation and recombination in conventional and inverted bulk heterojunction organic solar cells. J. Appl. Phys. 2018, 124, 083103. [Google Scholar] [CrossRef]
- Barreiro-Argüelles, D.; Ramos-Ortiz, G.; Maldonado, J.-L.; Pérez-Gutiérrez, E.; Romero-Borja, D.; Meneses-Nava, M.-A.; Nolasco, J.C. Stability study in organic solar cells based on PTB7:PC71BM and the scaling effect of the active layer. Sol. Energy 2018, 163, 510–518. [Google Scholar] [CrossRef]
- Mousavi, S.L.; Jamali-Sheini, F.; Sabaeian, M.; Yousefi, R. Enhanced solar cell performance of P3HT:PCBM by SnS nanoparticles. Sol. Energy 2020, 199, 872–884. [Google Scholar] [CrossRef]
- Li, C.; Yue, Q.; Wu, H.; Li, B.; Zhu, X.; Zhu, X. Small bandgap non-fullerene acceptor enables efficient PTB7-Th solar cell with near 0 eV HOMO offset. J. Energy Chem. 2021, 52, 60–66. [Google Scholar] [CrossRef]
- Berger, P.R.; Kim, M. Polymer solar cells: P3HT:PCBM and beyond. J. Renew. Sustain. Energy 2018, 10, 013508. [Google Scholar] [CrossRef]
- Gurney, R.S.; Lidzey, D.G.; Wang, T. A review of non-fullerene polymer solar cells: From device physics to morphology control. Rep. Prog. Phys. 2019, 82, 036601. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Yan, H.; Li, R.; Peng, Q. Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy Environ. Sci. 2020, 13, 4381–4388. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Reshma, L.; Santhakumar, K. Non-fullerene organic solar cells with 7% efficiency and excellent air stability through morphological and interfacial engineering. Org. Electron. 2017, 47, 35–43. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, F.; Zhou, D.; Liao, X.; Chen, L.; Chen, Y. Hole transport layers for organic solar cells: Recent progress and prospects. J. Mater. Chem. A 2020, 8, 11478–11492. [Google Scholar] [CrossRef]
- Agnihotri, P.; Sahu, S.; Tiwari, S. Recent advances & perspectives in electron transport layer of organic solar cells for efficient solar energy harvesting. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 1568–1573. [Google Scholar]
- Van Le, Q.; Choi, J.Y.; Kim, S.Y. Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells. FlatChem 2017, 2, 54–66. [Google Scholar] [CrossRef]
- Rasool, S.; Van Doan, V.; Lee, H.K.; Lee, S.K.; Lee, J.-C.; Moon, S.-J.; So, W.W.; Song, C.E.; Shin, W.S.; Shafket, R. Enhanced photostability in polymer solar cells achieved with modified electron transport layer. Thin Solid Films 2019, 669, 42–48. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, T.; Li, J.; Xue, W.; Han, C.; Cheng, Y.; Qian, L.; Cao, W.; Yang, Y.; Chen, S. Multiple electron transporting layers and their excellent properties based on organic solar cell. Sci. Rep. 2017, 7, 9571. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Kumar, B.; Park, H.-J.; Kim, S.-W. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells. Nanoscale Res. Lett. 2010, 5, 1908–1912. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, G.; Pratyusha, T.; Gupta, D.; Shen, W. Doping of Hole Transport Layer PEDOT: PSS with Pentacene for PCDTBT: PCBM Based Organic Solar Cells. Mater. Today Proc. 2017, 4, 6814–6819. [Google Scholar] [CrossRef]
- Chien, H.-T.; Pölzl, M.; Koller, G.; Challinger, S.; Fairbairn, C.; Baikie, I.; Kratzer, M.; Teichert, C.; Friedel, B. Effects of hole-transport layer homogeneity in organic solar cells—A multi-length scale study. Surf. Interfaces 2017, 6, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Sievers, D.W.; Shrotriya, V.; Yang, Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 2006, 100, 114509. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, L.A.; Roman, L.S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496. [Google Scholar] [CrossRef]
- Hoppe, H.; Sariciftci, N.S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45–61. [Google Scholar] [CrossRef]
- Zhu, F. Semitransparent organic solar cells. Front. Optoelectron. 2014, 7, 20–27. [Google Scholar] [CrossRef]
- Singh, J.; Narayan, M.; Ompong, D.; Zhu, F. Dissociation of charge transfer excitons at the donor–acceptor interface in bulk heterojunction organic solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 7095–7099. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Adv. Mater. 2016, 28, 9423–9429. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O.M.; et al. 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS 2 as a Replacement for PEDOT:PSS. Adv. Mater. 2019, 31, e1902965. [Google Scholar] [CrossRef]
- Monestier, F.; Simon, J.-J.; Torchio, P.; Escoubas, L.; Flory, F.; Bailly, S.; De Bettignies, R.; Guillerez, S.; Defranoux, C. Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol. Energy Mater. Sol. Cells 2007, 91, 405–410. [Google Scholar] [CrossRef]
- Ompong, D.; Narayan, M.; Singh, J. Optimization of photocurrent in bulk heterojunction organic solar cells using optical admittance analysis method. J. Mater. Sci. Mater. Electron. 2017, 28, 7100–7106. [Google Scholar] [CrossRef]
- Anthopoulos, Y.F.T.D.; KAUST Solar Center (KSC), Thuwal, Saudi Arabia. Personal communication, 2020.
- Sopra, S.A. Optical Data from Sopra SA. Available online: http://sspectra.com/sopra.html (accessed on 31 December 2020).
- Optical Constants. Available online: https://www.jawoollam.com/resources/ ellipsometry-tutorial/optical-constants (accessed on 31 December 2020).
- Zhu, F.; Hong Kong Baptist University, Kowloon Tong, Hong Kong. Personal communication, 2017.
- Stelling. Refractive Index Database. 2017. Available online: https://refractiveindex.info/ (accessed on 31 December 2020).
- Kumar, P.; Jain, S.C.; Kumar, V.; Chand, S.; Tandon, R.P. Effect of illumination on the space charge limited current in organic bulk heterojunction diodes. Appl. Phys. A 2009, 94, 281–286. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhou, Q.; Wang, R.; Zhou, J.; Wang, J.; Zhou, H.; Zhang, Y. Fluorination with an enlarged dielectric constant prompts charge separation and reduces bimolecular recombination in non-fullerene organic solar cells with a high fill factor and efficiency > 13%. Nano Energy 2019, 56, 494–501. [Google Scholar] [CrossRef]
- Nam, Y.M.; Huh, J.; Jo, W.H. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1118–1124. [Google Scholar] [CrossRef]
- Ram, K.S.; Ompong, D.; Rad, H.M.; Setsoafia, D.D.Y.; Singh, J. An Alternative Approach to Simulate the Power Conversion Efficiency of Bulk Heterojunction Organic Solar Cells. Phys. Status solidi 2020, 2000597. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, M.-R.; Lee, H.-J.; Lee, G.-H. Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering. Appl. Surf. Sci. 2006, 253, 409–411. [Google Scholar] [CrossRef]
- Schiefer, S.; Zimmermann, B.; Würfel, U. Determination of the intrinsic and the injection dependent charge carrier density in organic solar cells using the Suns-VOC method. J. Appl. Phys. 2014, 115, 044506. [Google Scholar] [CrossRef]
- Jeckelmann, B.; Piquemal, F. The Elementary Charge for the Definition and Realization of the Ampere. Ann. der Phys. 2019, 531, 1800389. [Google Scholar] [CrossRef] [Green Version]
- Steiner, R. History and progress on accurate measurements of the Planck constant. Rep. Prog. Phys. 2012, 76, 016101. [Google Scholar] [CrossRef]
- Porrat, D.; Bannister, P.R.; Fraser-Smith, A.C. Modal phenomena in the natural electromagnetic spectrum below 5 kHz. Radio Sci. 2001, 36, 499–506. [Google Scholar] [CrossRef]
- Pitre, L.; Plimmer, M.D.; Sparasci, F.; Himbert, M.E. Determinations of the Boltzmann constant. Comptes Rendus Phys. 2019, 20, 129–139. [Google Scholar] [CrossRef]
- Mei-Zhen, G.R.J.; De-Sheng, X.R.F.W. Thickness Dependence of Resistivity and Optical Reflectance of ITO Films. Chin. Phys. Lett. 2008, 25, 1380–1383. [Google Scholar] [CrossRef]
- Li, J.; Kim, S.; Edington, S.C.; Nedy, J.; Cho, S.; Lee, K.; Heeger, A.J.; Gupta, M.C.; Jr, J.T.Y. A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer. Sol. Energy Mater. Sol. Cells 2011, 95, 1123–1130. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
P3HT:PCBM | PBDB-T-SF:IT-4F | |
---|---|---|
(nm) | 40–180 | 40–180 |
3.0 [57] | 3.40 [58] | |
(m2V−1s−1) | 3 × 10−7 [59] | 6.27 × 10−9 [58] |
(m2V−1s−1) | 3 × 10−8 [59] | 2.26 × 10−8 [58] |
1.3 × 10−3 [60] | 1.6 × 10−3 [58] | |
() | 3.0 [60] | 1.0 [60] |
() | 4000 [60] | 1000 [60] |
() | 18.0 [61] | 13.7 [41,60] |
(cm) | 0.5 [50] | 1 [47] |
n | 3.2 × 1022 [62] | |
(nm) | 300 | |
(nm) | 900 | |
) | 2.1 × 1019 [22] | |
) | 6.3 × 1018 [22] | |
T (K) | 300 [25] | |
e (C) | 1.6 × 10−19 [63] | |
(m2kgs−1) | 6.63 × 10−34 [64] | |
(Fm−1) | 8.85 × 10−12 [65] | |
k (m2kgs−2K−1) | 1.38 × 10−23 [66] |
OSC1 | OSC2 | OSC3 | |
---|---|---|---|
L1 (nm) | 148 (ITO) | 148 (ITO) | 180 (ITO) |
L2 (nm) | 30 (ZnO) | 30 (PEDOT:PSS) | 45 (PEDOT:PSS) |
Lj (nm) | 95 (PBDBTSF:IT4F) | 100 (PBDBTSF:IT4F) | 80 (P3HT:PCBM) |
L4 (nm) | 10 (MoO3) | 5 (PFN-Br) | 1 (LiF) |
L5 (nm) | 100 (Al) | 100 (Al) | 100 (Al) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreedhar Ram, K.; Mehdizadeh-Rad, H.; Ompong, D.; Setsoafia, D.D.Y.; Singh, J. Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells. Nanomaterials 2021, 11, 209. https://doi.org/10.3390/nano11010209
Sreedhar Ram K, Mehdizadeh-Rad H, Ompong D, Setsoafia DDY, Singh J. Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells. Nanomaterials. 2021; 11(1):209. https://doi.org/10.3390/nano11010209
Chicago/Turabian StyleSreedhar Ram, Kiran, Hooman Mehdizadeh-Rad, David Ompong, Daniel Dodzi Yao Setsoafia, and Jai Singh. 2021. "Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells" Nanomaterials 11, no. 1: 209. https://doi.org/10.3390/nano11010209
APA StyleSreedhar Ram, K., Mehdizadeh-Rad, H., Ompong, D., Setsoafia, D. D. Y., & Singh, J. (2021). Characterising Exciton Generation in Bulk-Heterojunction Organic Solar Cells. Nanomaterials, 11(1), 209. https://doi.org/10.3390/nano11010209