Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. First Approach: Mono- to Few-Layered WS2 Growth on Si/SiO2
- Electron Microscope Analysis
- Raman Analysis
- Photoluminescence (PL) Analysis
3.2. Second Approach: Uniform Growth of WS2 Flakes on Spin-Coated GO
- Photoconductive response of sensor prepared with GO coated Si/SiO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cong, C.; Shang, J.; Wang, Y.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.S.; Cha, E.; Kim, J.; Choi, W. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.K.S.B.; Amin, N.; Alharbi, H.F.; Luqman, M.; Ayob, A.; Alharthi, Y.S.; Alharthi, N.H.; Bais, B.; Akhtaruzzaman, M. WS2: A New Window Layer Material for Solar Cell Application. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Gutiérrez, H.R.; Perea-López, N.; Elías, A.L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V.H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanoh, A.O.A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C.A.; Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y.; et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 2019, 19, 6299–6307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, X.; Cui, X. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Cao, T.; O’brien, K.; Zhu, H.; Yin, X.; Wang, Y.; Louie, S.G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E.K.; Yu, T. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994. [Google Scholar] [CrossRef]
- Lan, F.; Yang, R.; Xu, Y.; Qian, S.; Zhang, S.; Cheng, H.; Zhang, Y. Synthesis of large-scale single-crystalline monolayer WS2 using a semi-sealed Method. Nanomaterials 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lu, J.; Wang, Z.; Dai, Z.; Zhang, Y.; Huang, F.; Bao, Q.; Duan, W.; Fuhrer, M.S.; Zheng, C. Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation. Adv. Opt. Mater. 2018, 6, 1701347. [Google Scholar] [CrossRef]
- Liu, P.; Luo, T.; Xing, J.; Xu, H.; Hao, H.; Liu, H.; Dong, J. Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett. 2017, 12, 558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Kuljanishvili, I. Progress in fabrication of transition metal dichalcogenides heterostructure systems. J. Vac. Sci. Technol. B 2017, 35, 030803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Ge, J.; Peng, X.; Zhang, Q.; Wu, Z.; Jian, Y.; Xiong, X.; Yin, H.; Han, J. A reliable way of mechanical exfoliation of large scale two dimensional materials with high quality. AIP Adv. 2016, 6, 125201. [Google Scholar] [CrossRef] [Green Version]
- Ghorai, A.; Midya, A.; Maiti, R.; Ray, S.K. Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: A new method of Li intercalation. Dalton Trans. 2016, 45, 14979–14987. [Google Scholar] [CrossRef]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Elías, A.L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A.D.; Hayashi, T.; Kim, Y.A.; Endo, M.; et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242. [Google Scholar] [CrossRef]
- Cao, S.; Liu, T.; Hussain, S.; Zeng, W.; Peng, X.; Pan, F. Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater. Lett. 2014, 129, 205–208. [Google Scholar] [CrossRef]
- Alonso, G.; Petranovskii, V.; Del Valle, M.; Cruz-Reyes, J.; Licea-Claverie, A.; Fuentes, S. Preparation of WS2 catalysts by in situ decomposition of tetraalkylammonium thiotungstates. Appl. Catal. A 2000, 197, 87–97. [Google Scholar] [CrossRef]
- Balasubramanyam, S.; Shirazi, M.; Bloodgood, M.A.; Wu, L.; Verheijen, M.A.; Vandalon, V.; Kessels, W.M.; Hofmann, J.P.; Bol, A.A. Edge-site nanoengineering of WS2 by low-temperature plasma-enhanced atomic layer deposition for electrocatalytic hydrogen evolution. Chem. Mater. 2019, 31, 5104–5115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, T.A.; Chua, D.H.; Wee, A.T. One-step synthesis of few-layer WS2 by pulsed laser deposition. Sci. Rep. 2015, 5, 18116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, K.; Baskaran, K.; Tiwari, A. Growth of two-dimensional WS2 thin films by pulsed laser deposition technique. Thin Solid Film. 2018, 668, 69–73. [Google Scholar] [CrossRef]
- Koçak, Y.; Akaltun, Y.; Gür, E. Magnetron sputtered WS2; optical and structural analysis. J. Phys. Conf. Ser. 2016, 707, 012028. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liu, Z.; Sun, D.M.; Huang, L.; Ma, L.P.; Yin, L.C.; Ma, T.; Zhang, Z.; Ma, X.L.; Peng, L.M.; et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Q.; Zhang, Y.; Lin, S.; Zheng, C.; Zhong, Y.L.; Xia, X.; Li, Z.; Sophia, P.J.; Fuhrer, M.S.; Cheng, Y.B.; et al. Synthesis and transfer of large-area monolayer WS2 crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano 2015, 9, 6178–6187. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Zhang, W.; Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 2015, 6, 6705–6716. [Google Scholar] [CrossRef] [Green Version]
- Rong, Y.; Fan, Y.; Koh, A.L.; Robertson, A.W.; He, K.; Wang, S.; Tan, H.; Sinclair, R.; Warner, J.H. Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 2014, 6, 12096–12103. [Google Scholar] [CrossRef]
- Okada, M.; Okada, N.; Chang, W.H.; Endo, T.; Ando, A.; Shimizu, T.; Kubo, T.; Miyata, Y.; Irisawa, T. Gas-source CVD growth of atomic layered WS2 from WF6 and H2S precursors with high grain size uniformity. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, T.; Ryu, G.H.; Huang, H.; Sheng, Y.; Chang, R.J.; Warner, J.H. Self-limiting growth of high-quality 2D monolayer MoS2 by direct sulfurization using precursor-soluble substrates for advanced field-effect transistors and photodetectors. ACS Appl. Nano Mater. 2018, 2, 369–378. [Google Scholar] [CrossRef]
- Kim, Y.; Song, J.G.; Park, Y.J.; Ryu, G.H.; Lee, S.J.; Kim, J.S.; Jeon, P.J.; Lee, C.W.; Woo, W.J.; Choi, T.; et al. Self-limiting layer synthesis of transition metal dichalcogenides. Sci. Rep. 2016, 6, 18754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Tang, D.M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.N.; Godin, K.; Yang, E.H. The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Murphy, A.W.A.; Kuppe, C.; Hooper, D.C.; Valev, V.K.; Ilie, A. WS2 Nanotubes, 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano 2019, 13, 3896–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.W.; Chang, C.S.; Li, L.J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef] [Green Version]
- Abid; Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, P.; Islam, S.S.; Mishra, P. Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B 2018, 258, 424–435. [Google Scholar] [CrossRef]
- Sehrawat, P.; Islam, S.S. An ultrafast quantum thermometer from graphene quantum dots. Nanoscale Adv. 2019, 1, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Nan, H.; Xiao, S.; Wan, X.; Gu, X.; Du, A.; Ni, Z.; Ostrikov, K.K. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xia, J.; Wang, X.; Liu, L.; Kuo, J.L.; Tay, B.K.; Chen, S.; Zhou, W.; Liu, Z.; Shen, Z.X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.Y.; Jin, Y.; Yun, S.J.; Zhao, J.; Baik, J.; Keum, D.H.; Lee, H.S.; Lee, Y.H. Heterogeneous defect domains in single-crystalline hexagonal WS2. Adv. Mater. 2017, 29, 1605043. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Chen, J.; Zhang, Y.; Ding, S.; Zhao, F.; Wang, Y.; Zhang, D.; Li, R.; Dong, H.; Hu, W.; et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435–22444. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ding, S.; Su, W. A feasible approach to fabricate two-dimensional WS2 flakes: From monolayer to multilayer. Ceram. Int. 2018, 44, 22108–22112. [Google Scholar] [CrossRef]
- McCreary, K.M.; Hanbicki, A.T.; Jernigan, G.G.; Culbertson, J.C.; Jonker, B.T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 2016, 6, 19159. [Google Scholar] [CrossRef]
- Boson, A.J. Chemical Vapor Deposition of Two-Dimensional Materials and Heterostructures. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2017. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1083&context=chemistrydiss (accessed on 28 April 2017).
- Xiao, J.; Zhao, M.; Wang, Y.; Zhang, X. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics 2017, 6, 1309–1328. [Google Scholar] [CrossRef]
- Mitioglu, A.A.; Plochocka, P.; Jadczak, J.N.; Escoffier, W.; Rikken, G.L.J.A.; Kulyuk, L.; Maude, D.K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403. [Google Scholar] [CrossRef] [Green Version]
- Paur, M.; Molina-Mendoza, A.J.; Bratschitsch, R.; Watanabe, K.; Taniguchi, T.; Mueller, T. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.; Aslan, O.B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Shen, X.; Cong, C.; Peimyoo, N.; Cao, B.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.D.; Qin, J.K.; Li, Y.; Miao, P.; Sun, Z.Y.; Xu, P.; Zhen, L.; Xu, C.Y. Photoluminescence inhomogeneity and excitons in CVD-grown monolayer WS2. Opt. Mater. 2018, 80, 203–208. [Google Scholar] [CrossRef]
- Carozo, V.; Wang, Y.; Fujisawa, K.; Carvalho, B.R.; McCreary, A.; Feng, S.; Lin, Z.; Zhou, C.; Perea-López, N.; Elías, A.L.; et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, K.F.; He, K.; Lee, C.; Lee, G.H.; Hone, J.; Heinz, T.F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211. [Google Scholar] [CrossRef]
- Ross, J.S.; Wu, S.; Yu, H.; Ghimire, N.J.; Jones, A.M.; Aivazian, G.; Yan, J.; Mandrus, D.G.; Xiao, D.; Yao, W.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Liu, G.B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608. [Google Scholar] [CrossRef] [Green Version]
- McCreary, A.; Berkdemir, A.; Wang, J.; Nguyen, M.A.; Elías, A.L.; Perea-López, N.; Fujisawa, K.; Kabius, B.; Carozo, V.; Cullen, D.A.; et al. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS 2 monolayers produced by different growth methods. J. Mater. Res. 2016, 31, 931–944. [Google Scholar] [CrossRef]
- McCreary, K.M.; Hanbicki, A.T.; Singh, S.; Kawakami, R.K.; Jernigan, G.G.; Ishigami, M.; Ng, A.; Brintlinger, T.H.; Stroud, R.M.; Jonker, B.T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, L.; Li, X.; Pan, B.; Luo, T.; Liu, D.; Zou, C.; Liu, N.; Hu, Y.; Yang, K.; et al. Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition. Nano Res. 2019, 12, 2802–2807. [Google Scholar] [CrossRef]
- Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277. [Google Scholar] [CrossRef] [PubMed]
- Molas, M.R.; Nogajewski, K.; Potemski, M.; Babiński, A. Raman scattering excitation spectroscopy of monolayer WS2. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Botello Méndez, A.R.; Perea López, N.; Elías Arriaga, A.L.; Crespi, V.; López Urías, F.; Terrones Maldonado, H.; Terrones Maldonado, M. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 2013, 3, 1755. [Google Scholar]
- Gołasa, K.; Grzeszczyk, M.; Bożek, R.; Leszczyński, P.; Wysmołek, A.; Potemski, M.; Babiński, A. Resonant Raman scattering in MoS2—From bulk to monolayer. Solid State Commun. 2014, 197, 53–56. [Google Scholar] [CrossRef]
- Buscema, M.; Steele, G.A.; van der Zant, H.S.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.T.; Li, S.S.; Lai, W.J.; Yeh, Y.C.; Chen, H.A.; Chen, I.S.; Chen, L.C.; Chen, K.H.; Nemoto, T.; Isoda, S.; et al. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 2012, 51, 6662–6666. [Google Scholar] [CrossRef]
- Tripathi, N.; Mishra, P.; Joshi, B.; Islam, S.S. Catalyst free, excellent quality and narrow diameter of CNT growth on Al2O3 by a thermal CVD technique. Phys. E 2014, 62, 43–47. [Google Scholar] [CrossRef]
- Chakraborty, B.; Matte, H.R.; Sood, A.K.; Rao, C.N.R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectr. 2013, 44, 92–96. [Google Scholar] [CrossRef]
- Wang, Y.; Cong, C.; Qiu, C.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861. [Google Scholar] [CrossRef]
- Talib, M.; Tabassum, R.; Islam, S.S.; Mishra, P. Improvements in the performance of a visible–NIR photodetector using horizontally aligned TiS3 nanoribbons. ACS Omega 2019, 4, 6180–6191. [Google Scholar] [CrossRef] [Green Version]
- Abid; Sehrawat, P.; Islam, S.S.; Gulati, P.; Talib, M.; Mishra, P.; Khanuja, M. Development of highly sensitive optical sensor from carbon nanotube-alumina nanocomposite free-standing films: CNTs loading dependence sensor performance analysis. Sens. Actuators A 2018, 269, 62–69. [Google Scholar] [CrossRef]
Sample | Spot | Raman Peak Frequency (cm−1) | Frequency Difference | Intensity Ratio | |
---|---|---|---|---|---|
E2g | A1g | ||||
WS2/SiO2/Si | 1 | 354.3 | 421.1 | 66.7 | 1.75 |
2 | 349.7 | 418.7 | 69 | 1.15 | |
3 | 350.1 | 419.2 | 69.1 | 0.96 | |
4 | 350.1 | 419.4 | 69.3 | 0.99 | |
5 | 352.4 | 419.3 | 66.9 | 1.2 | |
6 | - | - | - | - | |
WS2/GO/SiO2/Si | S1 | 350.8 | 418.8 | 68.0 | 1.10 |
S2 | 351.0 | 421.2 | 70.2 | 1.93 | |
S3 | 349.7 | 418.25 | 68.5 | 1.80 | |
S4 | 350.1 | 419.0 | 68.9 | 2.75 | |
S5 | 352.9 | 419.6 | 66.5 | 2.55 | |
S6 | 351.0 | ~420.1 | 69.1 | 4.19 |
Sample | Energy (eV) | FWHM (meV) | |
---|---|---|---|
EXA | EXA | EXB | |
WS2/Si/SiO2 | 1.968 | 25.3 | - |
WS2/GO/SiO2/Si | 1.968 | 35.5 | 35.6 |
Sample | Raman Peak Frequency (cm−1) | A-Exciton Energy (eV) | Ref. | |
---|---|---|---|---|
E2g | A1g | |||
WS2/Al2O3 | 352.7 | 421.2 | 2.000 | [10] |
WS2/SiO2/Si | 353.0 | 418.3 | 1.920 | [18] |
WS2/Au | 356.2 | 420.9 | 1.935 | [25] |
WS2/SiO2/Si | 352.5 | 419.0 | 1.977 | [12] |
WS2/sapphire | 354.0 | 412.0 | 2.000 | [26] |
WS2/SiO2/Si | ~350 | ~416 | 1.949 | [28] |
WS2/SiO2/Si | 354.0 | 421.0 | 1.968 | this work |
WS2/GO/SiO2/Si | 351.2 | 421.4 | 1.968 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid; Sehrawat, P.; Julien, C.M.; Islam, S.S. Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production. Nanomaterials 2021, 11, 220. https://doi.org/10.3390/nano11010220
Abid, Sehrawat P, Julien CM, Islam SS. Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production. Nanomaterials. 2021; 11(1):220. https://doi.org/10.3390/nano11010220
Chicago/Turabian StyleAbid, Poonam Sehrawat, Christian M. Julien, and Saikh S. Islam. 2021. "Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production" Nanomaterials 11, no. 1: 220. https://doi.org/10.3390/nano11010220
APA StyleAbid, Sehrawat, P., Julien, C. M., & Islam, S. S. (2021). Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production. Nanomaterials, 11(1), 220. https://doi.org/10.3390/nano11010220