Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transport Properties
3.1.1. Magnetic Field Temperature Phase Diagram
3.1.2. Temperature Dependence of the Vortex Activation Energy
3.2. Point Contact Spectroscopy
PCAR Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bauer, E.D.; Frederick, N.A.; Ho, P.-C.; Zapf, V.S.; Maple, M.B. Superconductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B 2002, 65, 100506. [Google Scholar] [CrossRef]
- MacLaughlin, D.E.; Sonier, J.E.; Heffner, R.H.; Bernal, O.O.; Young, B.-L.; Rose, M.S.; Morris, G.D.; Bauer, E.D.; Do, T.D.; Maple, M.B. Muon Spin Relaxation and Isotropic Pairing in Superconducting PrOs4Sb12. Phys. Rev. Lett. 2002, 89, 157001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y.; Tsuchiya, A.; Kanayama, T.; Saha, S.R.; Sugawara, H.; Sato, H.; Higemoto, W.; Koda, A.; Ohishi, K.; Nishiyama, K.; et al. Time-Reversal Symmetry-Breaking Superconductivity in Heavy-Fermion PrOs4Sb12 Detected by Muon-Spin Relaxation. Phys. Rev. Lett. 2003, 91, 067003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekine, C.; Uchiumi, T.; Shirotani, I.; Yagi, T. Metal-Insulator Transition in PrRu4P12 with Skutterudite Structure. Phys. Rev. Lett. 1997, 79, 3218–3221. [Google Scholar] [CrossRef]
- Suderow, H.; Vieira, S.; Strand, J.D.; Bud’ko, S.; Canfield, P.C. Very-low-temperature tunneling spectroscopy in the heavy-fermion superconductor PrOs4Sb12. Phys. Rev. B 2004, 69, 060504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Pang, G.M.; Jiao, L.; Nicklas, M.; Chen, Y.; Weng, Z.F.; Smidman, M.; Schnelle, W.; Leithe-Jasper, A.; Maisuradze, A.; et al. Weak interband-coupling superconductivity in the filled skutterudite LaPt4Ge12. Phys. Rev. B 2015, 92, 220503. [Google Scholar] [CrossRef] [Green Version]
- Raza, Z.; Errea, I.; Oganov, A.R.; Saitta, A.M. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations. Sci. Rep. 2014, 4, 5889. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y.; Deminami, S.; Salamakha, L.; Sidorenko, A.; Heinrich, P.; Michor, H.; Bauer, E.; Sekine, C. Filled skutterudite superconductor CaOs4P12 prepared by high-pressure synthesis. Phys. Rev. B 2018, 98, 024513. [Google Scholar] [CrossRef] [Green Version]
- Izawa, K.; Nakajima, Y.; Goryo, J.; Matsuda, Y.; Osaki, S.; Sugawara, H.; Sato, H.; Thalmeier, P.; Maki, K. Multiple Superconducting Phases in New Heavy Fermion Superconductor PrOs4Sb12. Phys. Rev. Lett. 2003, 90, 117001. [Google Scholar] [CrossRef] [Green Version]
- Gumeniuk, R.; Schnelle, W.; Rosner, H.; Nicklas, M.; Leithe-Jasper, A.; Grin, Y. Superconductivity in the Platinum Germanides MPt4Ge12 (M=Rare-Earth or Alkaline-Earth Metal) with Filled Skutterudite Structure. Phys. Rev. Lett. 2008, 100, 017002. [Google Scholar] [CrossRef] [Green Version]
- Toda, M.; Sugawara, H.; Magishi, K.; Saito, T.; Koyama, K.; Aoki, Y.; Sato, H. Electrical, Magnetic and NMR Studies of Ge-Based Filled Skutterudites RPt4Ge12 (R=La, Ce, Pr, Nd). J. Phys. Soc. Jpn. 2008, 77, 124702. [Google Scholar] [CrossRef]
- Bauer, E.; Grytsiv, A.; Chen, X.-Q.; Melnychenko-Koblyuk, N.; Hilscher, G.; Kaldarar, H.; Michor, H.; Royanian, E.; Giester, G.; Rotter, M.; et al. Superconductivity in Novel Ge-Based Skutterudites: SrBaPt4Ge12. Phys. Rev. Lett. 2007, 99, 217001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanetake, F.; Mukuda, H.; Kitaoka, Y.; Magishi, K.; Sugawara, H.; M. Itoh, K.; E. Haller, E. Superconducting Characteristics of Filled Skutterudites LaPt4Ge12 and PrPt4Ge12: 73Ge-NQR/NMR Studies. J. Phys. Soc. Jpn. 2010, 79, 063702. [Google Scholar] [CrossRef]
- Sharath Chandra, L.S.; Chattopadhyay, M.K.; Roy, S.B.; Pandey, S.K. Thermal properties and electronic structure of superconducting germanide skutterudites and: A multi-band perspective. Philos. Mag. 2016, 96, 2161–2175. [Google Scholar] [CrossRef]
- Sharath Chandra, L.S.; Chattopadhyay, M.K.; Roy, S.B. Critical current density and vortex pinning in the two gap superconductor PrPt4Ge12. Supercond. Sci. Technol. 2012, 25, 105009. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.X.; Lv, H.; Tamegai, T. Effect of two-gap structure on flux pinning in MgB2. Phys. C Supercond. Its Appl. 2006, 445–448, 462–465. [Google Scholar] [CrossRef]
- Giubileo, F.; Roditchev, D.; Sacks, W.; Lamy, R.; Thanh, D.X.; Klein, J.; Miraglia, S.; Fruchart, D.; Marcus, J.; Monod, P. Two-Gap State Density inMgB2: A True Bulk Property Or A Proximity Effect? Phys. Rev. Lett. 2001, 87, 177008. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Kohen, A.; Giubileo, F.; Proslier, T.; Bobba, F.; Cucolo, A.M.; Sacks, W.; Noat, Y.; Troianovski, A.; Roditchev, D. Two regimes in the magnetic field response of superconducting MgB2. Eur. Phys. J. B 2007, 57, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; MacLaughlin, D.E.; Hillier, A.D.; Ding, Z.F.; Huang, K.; Maple, M.B.; Shu, L. Broken time-reversal symmetry in superconducting Pr1-xCexPt4Ge12. Phys. Rev. B 2015, 91, 104523. [Google Scholar] [CrossRef] [Green Version]
- Maisuradze, A.; Schnelle, W.; Khasanov, R.; Gumeniuk, R.; Nicklas, M.; Rosner, H.; Leithe-Jasper, A.; Grin, Y.; Amato, A.; Thalmeier, P. Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12. Phys. Rev. B 2010, 82, 024524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ding, Z.F.; Huang, K.; Tan, C.; Hillier, A.D.; Biswas, P.K.; MacLaughlin, D.E.; Shu, L. Broken time-reversal symmetry in superconducting Pr1-xLaxPt4Ge12. Phys. Rev. B 2019, 100, 024508. [Google Scholar] [CrossRef] [Green Version]
- Zang, J.-W.; Zhang, J.; Zhu, Z.-H.; Ding, Z.-F.; Huang, K.; Peng, X.-R.; Hillier, A.D.; Shu, L. Broken Time-Reversal Symmetry in Superconducting Partially Filled Skutterudite PrPt4Ge12. Chin. Phys. Lett. 2019, 36, 107402. [Google Scholar] [CrossRef]
- Pfau, H.; Nicklas, M.; Stockert, U.; Gumeniuk, R.; Schnelle, W.; Leithe-Jasper, A.; Grin, Y.; Steglich, F. Superconducting gap structure of the skutterudite LaPt4Ge12 probed by specific heat and thermal transport. Phys. Rev. B 2016, 94, 054523. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Bergk, B.; Klotz, J.; Förster, T.; Gumeniuk, R.; Leithe-Jasper, A.; Lorenz, V.; Schnelle, W.; Nicklas, M.; Rosner, H.; Grin, Y.; et al. Fermi surface studies of the skutterudite superconductors LaPt4Ge12 and PrPt4Ge12. Phys. Rev. B 2019, 99, 245115. [Google Scholar] [CrossRef]
- Huang, K.; Shu, L.; Lum, I.K.; White, B.D.; Janoschek, M.; Yazici, D.; Hamlin, J.J.; Zocco, D.A.; Ho, P.-C.; Baumbach, R.E.; et al. Probing the superconductivity of PrPt4Ge12 through Ce substitution. Phys. Rev. B 2014, 89, 035145. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Introduction to Superconductivity, 2nd ed.; Dover Books on Physics; Dover Publications: Mineola, NY, USA, 2004; ISBN 978-0-486-43503-9. [Google Scholar]
- Chandra, L.S.S.; Chattopadhyay, M.K. Magnetic properties in the vortex state of Pr1-xNdxPt4Ge12 and PrPt3.88Fe0.12Ge12 superconductors. Phys. C Supercond. Its Appl. 2018, 546, 50–54. [Google Scholar] [CrossRef]
- Maisuradze, A.; Nicklas, M.; Gumeniuk, R.; Baines, C.; Schnelle, W.; Rosner, H.; Leithe-Jasper, A.; Grin, Y.; Khasanov, R. Superfluid Density and Energy Gap Function of Superconducting PrPt 4 Ge 12. Phys. Rev. Lett. 2009, 103, 147002. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.P.; Adhikari, R.B.; Zhang, S.; Huang, K.; Yazici, D.; Jeon, I.; Maple, M.B.; Dzero, M.; Almasan, C.C. Multiband superconductivity in the correlated electron filled skutterudite system Pr(1-x)Ce{x}Pt4Ge. Phys. Rev. B 2016, 94, 144502. [Google Scholar] [CrossRef] [Green Version]
- Romano, P.; Avitabile, F.; Shu, L.; Zhang, J.; Nigro, A.; Leo, A.; Grimaldi, G.; Giubileo, F. Low temperature point contact spectroscopy and transport measurements on filled skutterudite compounds. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace); Torino, Italy, 19–21 June 2019, pp. 573–578.
- Huang, K.; Yazici, D.; White, B.D.; Jeon, I.; Breindel, A.J.; Pouse, N.; Maple, M.B. Superconducting and normal state properties of the systems La{1-x}MxPt4Ge12 (M = Ce, Th). Phys. Rev. B 2016, 94, 094501. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.; Huang, K.; Yazici, D.; Kanchanavatee, N.; White, B.D.; Ho, P.-C.; Jang, S.; Pouse, N.; Maple, M.B. Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge(12-x)Sb{x}. Phys. Rev. B 2016, 93, 104507. [Google Scholar] [CrossRef] [Green Version]
- Helfand, E.; Werthamer, N.R. Temperature and Purity Dependence of the Superconducting Critical Field, H c 2. II. Phys. Rev. 1966, 147, 288–294. [Google Scholar] [CrossRef]
- Helfand, E.; Werthamer, N.R. Temperature and Purity Dependence of the Superconducting Critical Field, H c 2. Phys. Rev. Lett. 1964, 13, 686–688. [Google Scholar] [CrossRef]
- Caixeiro, E.S.; González, J.L.; de Mello, E.V.L. Upper critical field H c 2 calculations for the high critical temperature superconductors considering inhomogeneities. Phys. Rev. B 2004, 69, 024521. [Google Scholar] [CrossRef] [Green Version]
- Ślebarski, A.; Zajdel, P.; Fijałkowski, M.; Maśka, M.M.; Witas, P.; Goraus, J.; Fang, Y.; Arnold, D.C.; Maple, M.B. The effective increase in atomic scale disorder by doping and superconductivity in Ca 3 Rh 4 Sn 13. New J. Phys. 2018, 20, 103020. [Google Scholar] [CrossRef]
- Chandra, L.S.S.; Chattopadhyay, M.K.; Roy, S.B. Evidence for two superconducting gaps in the unconventional superconductor PrPt 4 Ge 12. Philos. Mag. 2012, 92, 3866–3881. [Google Scholar] [CrossRef]
- Matsushita, T.; Fujiyoshi, T.; Toko, K.; Yamafuji, K. Flux creep and irreversibility line in high-temperature oxide superconductors. Appl. Phys. Lett. 1990, 56, 2039–2041. [Google Scholar] [CrossRef]
- Yeshurun, Y.; Malozemoff, A.P. Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model. Phys. Rev. Lett. 1988, 60, 2202–2205. [Google Scholar] [CrossRef]
- Prando, G.; Carretta, P.; De Renzi, R.; Sanna, S.; Palenzona, A.; Putti, M.; Tropeano, M. Vortex dynamics and irreversibility line in optimally doped SmFeAsO0.8F0.2 from ac susceptibility and magnetization measurements. Phys. Rev. B 2011, 83, 174514. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Cheng, P.; Wang, Z.; Fang, L.; Ren, C.; Shan, L.; Wen, H.-H. Flux dynamics and vortex phase diagram in Ba(Fe1−xCox)2As2 single crystals revealed by magnetization and its relaxation. Phys. Rev. B 2010, 81, 014503. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.Y.; Wang, G.Q.; Yao, X.X.; Peng, H.T.; Peng, Q.Y.; Zhou, S.H. Magnetic relaxation and the flux diffusion barrier for TlSr2Ca2Cu3Oy doped with Pb and Ba determined by complex ac susceptibility measurements. Phys. Rev. B 1995, 51, 9107–9110. [Google Scholar] [CrossRef] [PubMed]
- Gümbel, A.; Eckert, J.; Fuchs, G.; Nenkov, K.; Müller, K.-H.; Schultz, L. Improved superconducting properties in nanocrystalline bulk MgB2. Appl. Phys. Lett. 2002, 80, 2725–2727. [Google Scholar] [CrossRef]
- Miura, M.; Maiorov, B.; Balakirev, F.F.; Kato, T.; Sato, M.; Takagi, Y.; Izumi, T.; Civale, L. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Sci. Rep. 2016, 6, 20436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blatter, G.; Feigel’man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994, 66, 1125–1388. [Google Scholar] [CrossRef]
- Palstra, T.T.M.; Batlogg, B.; van Dover, R.B.; Schneemeyer, L.F.; Waszczak, J.V. Dissipative flux motion in high-temperature superconductors. Phys. Rev. B 1990, 41, 6621–6632. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, C.; Guarino, A.; Nigro, A.; Attanasio, C. Critical currents and pinning forces in Nd2−xCexCuO4−δ thin films. Phys. Rev. B 2009, 79, 144524. [Google Scholar] [CrossRef]
- Chin, C.C.; Morishita, T. The transport properties of YBa2Cu3O7−χ thin films. Phys. C Supercond. 1993, 207, 37–43. [Google Scholar] [CrossRef]
- Guarino, A.; Leo, A.; Grimaldi, G.; Martucciello, N.; Dean, C.; Kunchur, M.N.; Pace, S.; Nigro, A. Pinning mechanism in electron-doped HTS NdCeCuO epitaxial films. Supercond. Sci. Technol. 2014, 27, 124011. [Google Scholar] [CrossRef]
- Duif, A.M.; Jansen, A.G.M.; Wyder, P. Point-contact spectroscopy. J. Phys. Condens. Matter 1989, 1, 3157–3189. [Google Scholar] [CrossRef]
- Goll, G. Point-Contact Spectroscopy on Conventional and Unconventional Superconductors. In Advances in Solid State Physics; Kramer, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 213–225. ISBN 978-3-540-32430-0. [Google Scholar]
- Giubileo, F.; Romeo, F.; Di Bartolomeo, A.; Mizuguchi, Y.; Romano, P. Probing unconventional pairing in LaO0.5F0.5BiS2 layered superconductor by point contact spectroscopy. J. Phys. Chem. Solids 2018, 118, 192–199. [Google Scholar] [CrossRef]
- Zimmermann, U.; Dikin, D.; Kuhlmann, M.; Lamprecht, H.; Keck, K.; Wolf, T. Point—Contact spectroscopy on BSCCO—And YBCO—Break—Junctions. Phys. B Condens. Matter 1994, 194–169, 1707–1708. [Google Scholar] [CrossRef]
- Deutscher, G. Point Contact Spectroscopy in the High Tc Oxides. In Phase Separation in Cuprate Superconductors; Sigmund, E., Müller, K.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 26–36. [Google Scholar]
- Giubileo, F.; Piano, S.; Scarfato, A.; Bobba, F.; Di Bartolomeo, A.; Cucolo, A.M. A tunneling spectroscopy study of the pairing symmetry in the electron-doped Pr1−xLaCexCuO4−y. J. Phys. Condens. Matter 2010, 22, 045702. [Google Scholar] [CrossRef]
- Giubileo, F.; Piano, S.; Scarfato, A.; Bobba, F.; Di Bartolomeo, A.; Cucolo, A.M. Study of the pairing symmetry in the electron-doped cuprate Pr1-xLaCexCuO4-y by tunneling spectroscopy. Phys. C Supercond. 2010, 470, 922–925. [Google Scholar] [CrossRef]
- Mass, N.; Ilzycer, D.; Deutscher, G.; Desgardin, G.; Monot, I.; Weger, M. Sharp gap edge and determination of the fermi velocity in Y1Ba2Cu3O7−δ by point contact spectroscopy. J. Supercond. 1992, 5, 191–194. [Google Scholar] [CrossRef]
- Bugoslavsky, Y.; Miyoshi, Y.; Perkins, G.K.; Berenov, A.V.; Lockman, Z.; MacManus-Driscoll, J.L.; Cohen, L.F.; Caplin, A.D.; Zhai, H.Y.; Paranthaman, M.P.; et al. Structure of the superconducting gap in MgB2from point-contact spectroscopy. Supercond. Sci. Technol. 2002, 15, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Aprili, M.; Bobba, F.; Piano, S.; Scarfato, A.; Cucolo, A.M. Subharmonic gap structures and Josephson effect in MgB2/Nb microconstrictions. Phys. Rev. B 2005, 72, 174518. [Google Scholar] [CrossRef] [Green Version]
- Gonnelli, R.S.; Daghero, D.; Calzolari, A.; Ummarino, G.A.; Dellarocca, V.; Stepanov, V.A.; Kazakov, S.M.; Karpinski, J.; Portesi, C.; Monticone, E.; et al. Point-contact spectroscopy in MgB2: From fundamental physics to thin-film characterization. Supercond. Sci. Technol. 2004, 17, S93. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Bobba, F.; Scarfato, A.; Piano, S.; Aprili, M.; Cucolo, A.M. Temperature evolution of subharmonic gap structures in MgB2/Nb point-contacts. Phys. C Supercond. Its Appl. 2007, 460–462, 587–588. [Google Scholar] [CrossRef]
- Szabó, P.; Samuely, P.; Pribulová, Z.; Angst, M.; Bud’ko, S.; Canfield, P.C.; Marcus, J. Point-contact spectroscopy of Al- and C-doped MgB2: Superconducting energy gaps and scattering studies. Phys. Rev. B 2007, 75, 144507. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Bobba, F.; Giubileo, F.; Cucolo, A.M.; Gombos, M.; Vecchione, A. Pairing state in the ruthenocuprate superconductor RuSr2GdCu2O8: A point-contact Andreev reflection spectroscopy study. Phys. Rev. B 2006, 73, 064514. [Google Scholar] [CrossRef] [Green Version]
- Daghero, D.; Gonnelli, R.S. Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 2010, 23, 043001. [Google Scholar] [CrossRef] [Green Version]
- Fogelström, M.; Park, W.K.; Greene, L.H.; Goll, G.; Graf, M.J. Point-contact spectroscopy in heavy-fermion superconductors. Phys. Rev. B 2010, 82, 014527. [Google Scholar] [CrossRef] [Green Version]
- Parab, P.; Singh, D.; Haram, S.; Singh, R.P.; Bose, S. Point contact Andreev reflection studies of a non-centro symmetric superconductor Re6Zr. Sci. Rep. 2019, 9, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonezawa, S. Nematic Superconductivity in Doped Bi2Se3 Topological Superconductors. Condens. Matter 2018, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Soulen, R.J.; Byers, J.M.; Osofsky, M.S.; Nadgorny, B.; Ambrose, T.; Cheng, S.F.; Broussard, P.R.; Tanaka, C.T.; Nowak, J.; Moodera, J.S.; et al. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science 1998, 282, 85. [Google Scholar] [CrossRef] [Green Version]
- Romeo, F.; Giubileo, F.; Citro, R.; Di Bartolomeo, A.; Attanasio, C.; Cirillo, C.; Polcari, A.; Romano, P. Resonant Andreev Spectroscopy in normal-Metal/thin-Ferromagnet/Superconductor Device: Theory and Application. Sci. Rep. 2015, 5, 17544. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.J.M.; Beenakker, C.W.J. Andreev Reflection in Ferromagnet-Superconductor Junctions. Phys. Rev. Lett. 1995, 74, 1657–1660. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Romeo, F.; Citro, R.; Di Bartolomeo, A.; Attanasio, C.; Cirillo, C.; Polcari, A.; Romano, P. Point contact Andreev reflection spectroscopy on ferromagnet/superconductor bilayers. Phys. C Supercond. Its Appl. 2014, 503, 158–161. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Palanisami, A.; Louie, R.N.; Buhrman, R.A. Probing Ferromagnets with Andreev Reflection. Phys. Rev. Lett. 1998, 81, 3247–3250. [Google Scholar] [CrossRef] [Green Version]
- Catapano, M.; Romeo, F.; Citro, R.; Giubileo, F. Generalized Blonder-Tinkham-Klapwijk theory and conductance spectra with particle-hole mixing interface potential. Eur. Phys. J. B 2015, 88, 329. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.F. The Thermal Conductivity of the Intermediate State in Superconductors. J. Exp. Theor. Phys. 1964, 19, 1228. [Google Scholar]
- Deutscher, G. Andreev--Saint-James reflections: A probe of cuprate superconductors. Rev. Mod. Phys. 2005, 77, 109–135. [Google Scholar] [CrossRef] [Green Version]
- Blonder, G.E.; Tinkham, M.; Klapwijk, T.M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 1982, 25, 4515–4532. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Tanaka, Y. Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 2000, 63, 1641–1724. [Google Scholar] [CrossRef]
- Hu, C.-R. Midgap surface states as a novel signature for d-wave superconductivity. Phys. Rev. Lett. 1994, 72, 1526–1529. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.S.; Wu, W.C. Theory of point-contact spectroscopy in electron-doped cuprate superconductors. Phys. Rev. B 2007, 76, 220504. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Bobba, F.; Giubileo, F.; Vecchione, A.; Cucolo, A.M. Point-contact spectroscopy on RuSr2GdCu2O8. J. Phys. Chem. Solids 2006, 67, 384–386. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Jossa, A.; Bobba, F.; Akimenko, A.I.; Cucolo, A.M. Temperature dependence of the YBa2Cu3O7 energy gap in differently oriented tunnel junctions. Eur. Phys. J. B 2001, 24, 305–308. [Google Scholar] [CrossRef]
- Giubileo, F.; Jossa, A.; Bobba, F.; Akimenko, A.I.; Malandrino, G.; Perdicaro, L.M.S.; Fragala, I.L.; Cucolo, A.M. Study of Andreev reflections in Tl2Ba2CaCu2O8/Ag interfaces. Phys. C Supercond. 2002, 367, 170–173. [Google Scholar] [CrossRef]
- Giubileo, F.; Akimenko, A.I.; Bobba, F.; Cucolo, A.M. Tunneling spectroscopy and surface states in YBa2Cu3O7 and Tl2Ba2CaCu2O8 break junctions. Phys. C Supercond. Its Appl. 2001, 364–365, 626–628. [Google Scholar] [CrossRef]
- Wysokiński, M.M. Thermoelectric Effect in the Normal Conductor-Superconductor Junction: A BTK Approach. Acta Phys. Pol. A 2012, 122, 758–764. [Google Scholar] [CrossRef]
- Zhang, J.L.; Chen, Y.; Jiao, L.; Gumeniuk, R.; Nicklas, M.; Chen, Y.H.; Yang, L.; Fu, B.H.; Schnelle, W.; Rosner, H.; et al. Multiband superconductivity in PrPt4Ge12 single crystals. Phys. Rev. B 2013, 87, 064502. [Google Scholar] [CrossRef] [Green Version]
- Dynes, R.C.; Narayanamurti, V.; Garno, J.P. Direct Measurement of Quasiparticle-Lifetime Broadening in a Strong-Coupled Superconductor. Phys. Rev. Lett. 1978, 41, 1509–1512. [Google Scholar] [CrossRef]
- Shan, L.; Tao, H.J.; Gao, H.; Li, Z.Z.; Ren, Z.A.; Che, G.C.; Wen, H.H. s-wave pairing in MgCNi3 revealed by point contact tunneling. Phys. Rev. B 2003, 68, 144510. [Google Scholar] [CrossRef]
- Lee, P.A. Effect of Noise on the Current-Voltage Characteristics of a Josephson Junction. J. Appl. Phys. 1971, 42, 325–334. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, P.; Avitabile, F.; Nigro, A.; Grimaldi, G.; Leo, A.; Shu, L.; Zhang, J.; Di Bartolomeo, A.; Giubileo, F. Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals. Nanomaterials 2020, 10, 1810. https://doi.org/10.3390/nano10091810
Romano P, Avitabile F, Nigro A, Grimaldi G, Leo A, Shu L, Zhang J, Di Bartolomeo A, Giubileo F. Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals. Nanomaterials. 2020; 10(9):1810. https://doi.org/10.3390/nano10091810
Chicago/Turabian StyleRomano, Paola, Francesco Avitabile, Angela Nigro, Gaia Grimaldi, Antonio Leo, Lei Shu, Jian Zhang, Antonio Di Bartolomeo, and Filippo Giubileo. 2020. "Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals" Nanomaterials 10, no. 9: 1810. https://doi.org/10.3390/nano10091810
APA StyleRomano, P., Avitabile, F., Nigro, A., Grimaldi, G., Leo, A., Shu, L., Zhang, J., Di Bartolomeo, A., & Giubileo, F. (2020). Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals. Nanomaterials, 10(9), 1810. https://doi.org/10.3390/nano10091810