Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural and Morphological Characterization
3.2. PNR
3.3. HAXPES
3.4. Static and Dynamic Magnetic Properties
3.4.1. DC Magnetometry
3.4.2. Broadband FMR
3.4.3. X-Band FMR
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef] [Green Version]
- Burkov, A.A.; Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkov, A.A.; Hook, M.D.; Balents, L. Topological nodal semimetals. Phys. Rev. B 2011, 84, 235126. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef] [Green Version]
- Noky, J.; Sun, Y. Linear Response in Topological Materials. Appl. Sci. 2019, 9, 4832. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Patankar, S.; Morimoto, T.; Nair, N.L.; Thewalt, E.; Little, A.; Analytis, J.G.; Moore, J.E.; Orenstein, J. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 2017, 13, 350–355. [Google Scholar] [CrossRef]
- Moore, J. Optical properties of Weyl semimetals. Nat. Sci. Rev. 2019, 6, 206–208. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Zhujun, Y.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 2017, 8, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Manna, K.; Sun, Y.; Müchler, L.; Kübler, J.; Felser, C. Heusler, Weyl, and Berry. Nat. Rev. Mater. 2018, 3, 244. [Google Scholar] [CrossRef] [Green Version]
- Burkov, A.A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 2014, 113, 187202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.K.; Fischer, J.E.; Sun, Y.; Yan, B.; Karel, J.; Komarek, A.C.; Shekhar, C.; Kumar, N.; Schnelle, W.; Kübler, J.; et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016, 2, e1501870. [Google Scholar] [CrossRef] [Green Version]
- Manna, K.; Muechler, L.; Kao, T.H.; Stinshoff, R.; Zhang, Y.; Gooth, J.; Kumar, N.; Kreiner, G.; Koepernik, K.; Car, R.; et al. From colossal to zero: Controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys. Rev. X 2018, 8, 041045. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.M.; Markou, A.; Lesne, E.; Sivakumar, P.K.; Luo, C.; Radu, F.; Werner, P.; Felser, C.; Parkin, S.P.P. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn. Phys. Rev. B 2020, 101, 094404. [Google Scholar] [CrossRef] [Green Version]
- Ernst, B.; Sahoo, R.; Sun, Y.; Nayak, J.; Müchler, L.; Nayak, A.K.; Kumar, N.; Gayles, J.; Markou, A.; Fecher, G.H.; et al. Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films. Phys. Rev. B 2019, 100, 054445. [Google Scholar] [CrossRef] [Green Version]
- Ikhlas, M.; Tomita, T.; Koretsune, T.; Suzuki, M.; Nishio-Hamane, D.; Arita, R.; Otani, Y.; Nakatsuji, S. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017, 13, 1085–1090. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Ding, L.; Wang, J.; Shen, M.; Lu, X.; Zhu, Z.; Behnia, K. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 2017, 119, 056601. [Google Scholar] [CrossRef] [Green Version]
- Reichlová, H.; Janda, T.; Godinho, J.; Markou, A.; Kriegner, D.; Schlitz, R.; Železný, J.; Soban, Z.; Bejarano, M.; Schultheiss, H.; et al. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn. Nat. Commun. 2019, 10, 5459. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ernst, B.; Tu, S.; Kuveždic, M.; Hamzíc, A.; Tafra, E.; Basletíc, M.; Zhang, Y.; Markou, A.; Felser, C.; et al. Anomalous Hall and Nernst effects in Co2TiSn and Co2Ti0.6V0.4Sn Heusler thin films. Phys. Rev. Appl. 2018, 10, 044037. [Google Scholar] [CrossRef]
- Higo, T.; Man, H.; Gopman, D.; Wu, L.; Koretsune, T.; van ’t Erve, O.M.J.; Kabanov, Y.P.; Rees, D.; Li, Y.; Suzuki, M.T.; et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 2018, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Son, D.T.; Spivak, B.Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 2013, 88, 104412. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhao, L.; Long, Y.; Wang, P.; Chen, D.; Yang, Z.; Liang, H.; Xue, M.; Weng, H.; Fang, Z.; et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3d Weyl semimetal TaAs. Phys. Rev. X 2015, 5, 031023. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Vergniory, M.G.; Kushwaha, S.; Hirschberger, M.; Chulkov, E.V.; Ernst, A.; Ong, N.; Cava, R.J.; Bernevig, B.A. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. Phys. Rev. Lett. 2016, 117, 236401. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.; Xu, S.Y.; Zheng, H.; Singh, B.; Hsu, C.H.; Bian, G.; Alidoust, N.; Belopolski, I.; Sanchez, D.S.; Zhang, S.; et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 2016, 6, 38839. [Google Scholar] [CrossRef] [PubMed]
- Kübler, J.; Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 2016, 114, 47005. [Google Scholar] [CrossRef]
- Liu, E.K.; Sun, Y.; Kumar, N.; Muechler, L.; Sun, A.L.; Jiao, L.; Yang, S.Y.; Liu, D.F.; Liang, A.; Xu, Q.N.; et al. Giant anomalous Hall effect in a ferromagnetic kagomé-lattice semimetal. Nat. Phys. 2018, 14, 1125–1131. [Google Scholar] [CrossRef]
- Liu, D.F.; Liang, A.J.; Liu, E.K.; Xu, Q.N.; Li, Y.W.; Chen, C.; Pei, D.; Shi, W.J.; Mo, S.K.; Dudin, P.; et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 2019, 365, 1282–1285. [Google Scholar] [CrossRef] [Green Version]
- Morali, N.; Batabyal, R.; Nag, P.K.; Liu, E.; Xu, Q.; Sun, Y.; Yan, B.; Felser, C.; Avraham, N.; Beidenkopf, H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019, 365, 1286–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belopolski, I.; Manna, K.; Sanchez, D.S.; Chang, G.; Ernst, B.; Yin, J.; Zhang, S.S.; Cochran, T.; Shumiya, N.; Zheng, H.; et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 2019, 365, 278–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, P.J. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Solids 1971, 32, 1221–1231. [Google Scholar] [CrossRef]
- Markou, A.; Kriegner, D.; Gayles, J.; Zhang, L.; Chen, Y.C.; Ernst, B.; Lai, Y.H.; Schnelle, W.; Chu, Y.H.; Sun, Y.; et al. Thickness dependence of the anomalous Hall effect in thin films of the topological semimetal Co2MnGa. Phys. Rev. B 2019, 100, 054422. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Mizuta, Y.P.; Nugroho, A.A.; Sihombing, R.; Koretsune, T.; Suzuki, M.T.; Takemori, N.; Ishii, R.; Nishio-Hamane, D.; Arita, R.; et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 2018, 14, 1119–1124. [Google Scholar] [CrossRef]
- Guin, S.N.; Manna, K.; Noky, J.; Watzman, S.J.; Fu, C.; Kumar, N.; Schnelle, W.; Shekhar, C.; Sun, Y.; Gooth, J.; et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Reichlova, H.; Schlitz, R.; Beckert, S.; Swekis, P.; Markou, A.; Chen, Y.C.; Kriegner, D.; Fabretti, S.; Park, G.H.; Niemann, A.; et al. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Appl. Phys. Lett. 2018, 113, 212405. [Google Scholar] [CrossRef] [Green Version]
- Park, G.H.; Reichlova, H.; Schlitz, R.; Lammel, M.; Markou, A.; Swekis, P.; Ritzinger, P.; Kriegner, D.; Noky, J.; Gayles, J.; et al. Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films. Phys. Rev. B 2020, 101, 060406(R). [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, X.; Ding, L.; Chen, T.; Sakai, A.; Fauqué, B.; Nakatsuji, S.; Zhu, Z.; Behnia, K. Anomalous transverse response of Co2MnGa and universality of the room-temperature ratio across topological magnets. Phys. Rev. B 2020, 101, 180404(R). [Google Scholar] [CrossRef]
- Sato, T.; Kokado, S.; Kosaka, S.; Ishikawa, T.; Ogawa, T.; Tsunoda, M. Large negative anisotropic magnetoresistance in Co2MnGa Heusler alloy epitaxial thin films. Appl. Phys. Lett. 2018, 113, 112407. [Google Scholar] [CrossRef]
- Varaprasad, B.S.D.C.S.; Rajanikanth, A.; Takahashi, Y.K.; Hono, K. Enhanced Spin Polarization of Co2MnGe Heusler Alloy by Substitution of Ga for Ge. Appl. Phys. Express 2010, 3, 023002. [Google Scholar] [CrossRef]
- Guillemard, C.; Petit-Watelot, S.; Pasquier, L.; Pierre, D.; Ghanbaja, J.J.-C.; Rojas-Sánchez, A.B.; Rault, J.; Fèvre, P.L.; Bertran, F.; Andrieu, S. Ultralow Magnetic Damping in Co2Mn-based Heusler compounds: Promising Materials for Spintronics. Phys. Rev. Appl. 2019, 11, 064009. [Google Scholar] [CrossRef] [Green Version]
- Guillemard, C.; Petit-Watelot, S.; Rojas-Sánchez, J.C.; Hohlfeld, J.; Ghanbaja, J.; Bataille, A.; Fèvre, P.L.; Bertran, F.; Andrieu, S. Polycrystalline Co2Mn-based Heusler thin films with high spin polarization and low magnetic damping. Appl. Phys. Lett. 2019, 115, 172401. [Google Scholar] [CrossRef]
- Pechan, M.J.; Yu, C.; Carr, D.; Palmstrøm, C.J. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films. J. Magn. Magn. Mater. 2005, 286, 340. [Google Scholar] [CrossRef]
- Devishvili, A.; Zhernenkov, K.; Dennison, A.J.C.; Toperverg, B.P.; Wolff, M.; Hjörvarsson, B.; Zabel, H. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin. Rev. Sci. Instrum. 2013, 84, 025112. [Google Scholar] [CrossRef]
- Vorobiev, A.; Devishvilli, A.; Palsson, G.; Rundlöf, H.; Johansson, N.; Olsson, A.; Dennison, A.; Wollf, M.; Giroud, B.; Aguettaz, O.; et al. Recent upgrade of the polarized neutron reflectometer Super ADAM. Neutron News 2015, 26, 25–26. [Google Scholar] [CrossRef]
- Schlueter, C.; Gloskovskii, A.; Ederer, K.; Schostak, I.; Piec, S.; Sarkar, I.; Matveyev, Y.; Lömker, P.; Sing, M.; Claessen, R.; et al. The new dedicated HAXPES beamline P22 at PETRAIII. AIP Conf. Proc. 2019, 2054, 040010. [Google Scholar]
- Gloskovskii, A.; Stryganyuk, G.; Fecher, G.H.; Felser, C.; Thiess, S.; Schulz-Ritter, H.; Drube, W.; Berner, G.; Sing, M.; Claessen, R.; et al. Magnetometry of buried layers—Linear magnetic dichroism and spin detection in angular resolved hard X-ray photoelectron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2012, 185, 47–52. [Google Scholar] [CrossRef]
- Fecher, G.H.; Ebke, D.; Ouardi, S.; Agrestini, S.; Kuo, C.Y.; Jollmann, N.; Hu, Z.; Gloskovskii, A.; Yakhou, F.; Brookes, N.B.; et al. State of Co and Mn in half-metallic ferromagnet Co2MnSi explored by magnetic circular dichroism in hard X-ray photoelectron emission and soft X-ray absorption spectroscopies. Spin 2014, 4, 1440017. [Google Scholar] [CrossRef] [Green Version]
- Nembach, H.T.; Silva, T.; Shaw, J.M.; Schneider, M.L.; Carey, M.J.; Maat, S.; Childress, J.R. Perpendicular ferromagnetic resonance measurements of damping and Landé g-factor in sputtered (Co2Mn)1-xGex thin films. Phys. Rev. B 2011, 84, 054424. [Google Scholar] [CrossRef]
- Lita, A.E.; Sanchez, J.E., Jr. Characterization of Surface Structure in Sputtered Al Films: Correlation to Microstructure Evolution. J. Appl. Phys. 1999, 85, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Cougon, F.G.; Depla, D. The Seebeck coefficient of sputter deposited metallic thin films: The role of process conditions. Coatings 2019, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Björck, M.; Andersson, G. GenX: An extensible X-ray reflectivity refinement program utilizing differential evolution. J. Appl. Crystallogr. 2007, 40, 1174–1178. [Google Scholar] [CrossRef]
- Zhu, Y. Modern Techniques for Characterizing Magnetic Materials; Springer: New York, NY, USA, 2005. [Google Scholar]
- Menchero, J.G. One-electron theory of core-level photoemission from ferromagnets. Phys. Rev. B 1998, 57, 993–1000. [Google Scholar] [CrossRef]
- Martins, M.; Godehusen, K.; Richter, T.; Wernet, P.; Zimmermann, P. Open shells and multi-electron interactions: Core level photoionization of the 3d metal atoms. J. Phys. B At. Mol. Opt. Phys. 2006, 29, R79–R125. [Google Scholar] [CrossRef]
- Kozina, X.; Fecher, G.H.; Stryganyuk, G.; Ouardi, S.; Balke, B.; Felser, C.; Ikenaga, E.; Sugiyama, T.; Kawamura, N.; Suzuki, M.; et al. Magnetic dichroism in angle-resolved hard X-ray photoemission from buried layers. Phys. Rev. B 2011, 84, 054449. [Google Scholar] [CrossRef] [Green Version]
- Van der Laan, G. M2,3 absorption spectroscopy of 3d transition-metal compounds. J. Phys. Condens. Matter 1991, 3, 7443–7454. [Google Scholar] [CrossRef]
- De Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bagus, P.S.; Broer, R.; de Jong, W.A.; Nieuwpoort, W.C. Atomic Many-Body Effects for the p-Shell Photoelectron Spectra of Transition Metals. Phys. Rev. Lett. 2000, 84, 2259–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakeri, K.; Lindner, J.; Barsukov, I.; Meckenstock, R.; Farle, M.; von Hörsten, U.; Wende, H.; Keune, W.; Rocker, J.; Kalarickal, S.S.; et al. Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys. Rev. B 2007, 76, 104416. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Hamrle, J.; Sakuraba, Y.; Gaier, O.; Oogane, M.; Sakuma, A.; Hillebrands, B.; Takanashi, K.; Ando, Y. Structure, exchange stiffness, and magnetic anisotropy of Co2MnAlxSi1-x Heusler compounds. J. Appl. Phys. 2009, 106, 113907. [Google Scholar] [CrossRef]
- Trudel, S.; Gaier, O.; Hamrle, J.; Hillebrands, B. Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: An experimental review. J. Phys. D Appl. Phys. 2010, 43, 193001. [Google Scholar] [CrossRef] [Green Version]
- Demiray, A.S.; Kubota, T.; Iihama, S.; Mizukami, S.; Miyazaki, T.; Naganuma, H.; Oogane, M.; Ando, Y. Static and dynamic magnetic properties of cubic Mn-Co-Ga Heusler films. J. Appl. Phys. 2014, 115, 17D133. [Google Scholar] [CrossRef]
- Liu, C.; Mewes, C.K.A.; Chshiev, M.; Mewes, T.; Butler, W.H. Origin of low Gilbert damping in half metals. J. Appl. Phys. 2009, 95, 022509. [Google Scholar] [CrossRef]
- Block, T.; Carey, M.J.; Gurney, B.A.; Jepsen, O. Band-structure calculations of the half-metallic ferromagnetism and structural stability of full- and half-Heusler phases. Phys. Rev. B 2004, 70, 205114. [Google Scholar] [CrossRef]
- Vonsovskii, S.V. Ferromagnetic Resonance, 1st ed.; Pergamon: Moscow, Russia, 1966. [Google Scholar]
- Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G.S.; Fullerton, E.E.; Leighton, C.; MacDonald, A.H.; Ralph, D.C.; Arena, D.A.; Dürr, H.A.; et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006. [Google Scholar] [CrossRef]
- Giannopoulos, G.; Reichel, L.; Markou, A.; Wallisch, W.; Stöger-Pollach, M.; Panagiotopoulos, I.; Psycharis, V.; Fähler, S.; Fidler, J.; Niarchos, D. Structural and magnetic properties of strongly carbon doped Fe-Co thin films. J. Magn. Magn. Mater. 2015, 393, 479–483. [Google Scholar] [CrossRef]
- Giannopoulos, G.; Salikhov, R.; Zingsem, B.; Markou, A.; Panagiotopoulos, I.; Psycharis, V.; Farle, M.; Niarchos, D. Large magnetic anisotropy in strained Fe/Co multilayers on AuCu and the effect of carbon doping. APL Mater. 2015, 3, 041103. [Google Scholar] [CrossRef] [Green Version]
t (nm) | c (Å) | a (Å) | f (%) | Sq (Å) | D (nm) |
---|---|---|---|---|---|
10 | 5.727 | 5.810 | 3.62 | 3.08 | 45 (±8) |
20 | 5.740 | 5.804 | 2.83 | 2.56 | 56 (±6) |
40 | 5.743 | 5.792 | 2.61 | 3.19 | 78 (±4) |
80 | 5.751 | 5.781 | 2.51 | 5.44 | 93 (±5) |
t (nm) | Ms (kA/m) | Meff (kA/m) | g | α (×10−3) | µ0ΔH (mT) |
---|---|---|---|---|---|
10 | 857 | 941 | 1.97 | 1.1 ± 0.8 | 14.4 ± 1.6 |
20 | 744 | 908 | 1.96 | 0.8 ± 0.2 | 14.4 ± 0.5 |
40 | 752 | 884 | 1.97 | 1.4 ± 0.1 | 6.4 ± 0.2 |
80 | 760 | 895 | 1.95 | 2.1 ± 0.2 | 5.8 ± 0.4 |
t (nm) | Ku,eff (kJ/m3) | Ku,[001] (kJ/m3) | Kc (kJ/m3) |
---|---|---|---|
10 | 556 | −95 | 7.0 |
20 | 415 | −67 | 3.4 |
40 | 430 | −75 | 3.7 |
80 | 421 | −59 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swekis, P.; Sukhanov, A.S.; Chen, Y.-C.; Gloskovskii, A.; Fecher, G.H.; Panagiotopoulos, I.; Sichelschmidt, J.; Ukleev, V.; Devishvili, A.; Vorobiev, A.; et al. Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films. Nanomaterials 2021, 11, 251. https://doi.org/10.3390/nano11010251
Swekis P, Sukhanov AS, Chen Y-C, Gloskovskii A, Fecher GH, Panagiotopoulos I, Sichelschmidt J, Ukleev V, Devishvili A, Vorobiev A, et al. Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films. Nanomaterials. 2021; 11(1):251. https://doi.org/10.3390/nano11010251
Chicago/Turabian StyleSwekis, Peter, Aleksandr S. Sukhanov, Yi-Cheng Chen, Andrei Gloskovskii, Gerhard H. Fecher, Ioannis Panagiotopoulos, Jörg Sichelschmidt, Victor Ukleev, Anton Devishvili, Alexei Vorobiev, and et al. 2021. "Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films" Nanomaterials 11, no. 1: 251. https://doi.org/10.3390/nano11010251
APA StyleSwekis, P., Sukhanov, A. S., Chen, Y. -C., Gloskovskii, A., Fecher, G. H., Panagiotopoulos, I., Sichelschmidt, J., Ukleev, V., Devishvili, A., Vorobiev, A., Inosov, D. S., Goennenwein, S. T. B., Felser, C., & Markou, A. (2021). Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films. Nanomaterials, 11(1), 251. https://doi.org/10.3390/nano11010251