Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Materials and Methods
4.2. Synthesis of Complexes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saenger, W. Principles of Nucleic Acid Structure; Springer: New York, NY, USA, 1984; ISBN 0-387-90762-9. [Google Scholar]
- Massue, J.; Quinn, S.J.; Gunnlaugsson, T. Lanthanide Luminescent Displacement Assays: The Sensing of Phosphate Anions Using Eu(III)−Cyclen-Conjugated Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2008, 130, 6900–6901. [Google Scholar] [CrossRef]
- Bowler, M.W.; Cliff, M.J.; Waltho, J.P.; Blackburn, G.M. Why did Nature select phosphate for its dominant roles in biology? New. J. Chem. 2010, 34, 784–794. [Google Scholar] [CrossRef]
- Vullev, V.I.; Jones, G. Photoinduced charge transfer in helical polypeptides. Res. Chem. Intermed. 2002, 28, 795–815. [Google Scholar] [CrossRef]
- Barela, T.D.; Sherry, A.D. A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium. Anal. Biochem. 1976, 71, 351–352. [Google Scholar] [CrossRef]
- Cable, M.L.; Kirby, J.P.; Levine, D.J.; Manary, M.J.; Gray, H.B.; Ponce, A. Detection of Bacterial Spores with Lanthanide−Macrocycle Binary Complexes. J. Am. Chem. Soc. 2009, 131, 9562–9570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffrey, D.F.; Gunnlaugsson, T. Displacement assay detection by a dimeric lanthanide luminescent ternary Tb(iii)–cyclen complex: High selectivity for phosphate and nitrate anions. Dalton Trans. 2014, 43, 17964–17970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-H.; Yuan, W.-T.; Zhu, C.-Q.; Xu, J.-G. Species-differentiable sensing of phosphate-containing anions in neutral aqueous solution based on coordinatively unsaturated lanthanide complex probes. Anal. Biochem. 2004, 331, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Gay, E.; Sammes, P.G. Anion effects on the luminescence of europium complexes. Dyes Pigm. 1997, 34, 195–205. [Google Scholar] [CrossRef]
- Zyryanov, G.V.; Palacios, M.A.; Anzenbacher, P., Jr. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed. 2007, 46, 7849–7852. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, Y.; Huang, D.; Su, M.; Wang, K.; Xiang, M.; Hong, M. Luminescent sensing profiles based on anion-responsive lanthanide(iii) quinolinecarboxylate materials: Solid-state structures, photophysical properties, and anionic species recognition. J. Mater. Chem. C 2015, 3, 2003–2015. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Liu, S.-B.; Yang, Y.-L.; Wang, P.-Z.; Zhang, A.-J.; Peng, Y. A Terbium(III)-Complex-Based On–Off Fluorescent Chemosensor for Phosphate Anions in Aqueous Solution and Its Application in Molecular Logic Gates. ACS Appl. Mater. Interfaces 2015, 7, 4415–4422. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cao, C.-S.; Zhao, B. A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chem.Commun. 2015, 51, 10280–10283. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, N.D.; Pedagogos, E.; Tan, S.-J.; Badve, S.V.; Hawley, C.M.; Perkovic, V.; Elder, G.J. Phosphate in early chronic kidney disease: Associations with clinical outcomes and a target to reduce cardiovascular risk. Nephrology 2012, 17, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Chana, T.O.; Zhang, J.; Rodeck, U.; Pascal, J.M.; Armen, R.S.; Spring, M.; Dumitru, C.D.; Myers, V.; Li, X.; Cheung, J.Y.; et al. Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity. Proc. Natl. Acad. Sci. USA 2011, 108, E1120–E1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, S.M.; Pokhrel, R. Spectrophotometric determination of phosphate in sugarcane juice, fertilizer, detergent and water samples by molybdenum blue method. Sci. World 2013, 11, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Kipngetich, T.E.; Hillary, M.; Swamy, T.A. Determination of levels of phosphates and sulphates in domestic water from three selected springs in Nandi County, Kenya. Int. J. Pharm. Life Sci. 2013, 4, 2828–2833. [Google Scholar]
- Sahu, S.K.; Ajmal, P.Y.; Bhangare, R.C.; Tiwari, M.; Pandit, G.G. Natural radioactivity assessment of a phosphate fertilizer plant area. J. Radiat. Res. Appl. Sci. 2014, 7, 123–128. [Google Scholar] [CrossRef]
- Gaddaum, J.H. The Estimation of Phosphorus in Blood. Biochem. J. 1926, 20, 1204–1207. [Google Scholar] [CrossRef] [Green Version]
- Bünzli, J.-C.G. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef]
- McCleskey, S.C.; Griffin, M.J.; Schneider, S.E.; McDevitt, J.T.; Anslyn, E.V. Differential Receptors Create Patterns Diagnostic for ATP and GTP. J. Am. Chem. Soc. 2003, 125, 1114–1115. [Google Scholar] [CrossRef]
- Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei, W.; Ren, N.; Huang, L.; Huang, W. Recent developments in lanthanide-based luminescent probes. Coord. Chem. Rev. 2014, 273–274, 201–212. [Google Scholar] [CrossRef]
- Hong, J.; Pei, D.; Guo, X. Quantum dot-Eu3+ conjugate as a luminescence turn-on sensor for ultrasensitive detection of nucleoside triphosphates. Talanta 2012, 99, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Weitz, E.A.; Chang, J.Y.; Rosenfield, A.H.; Morrow, E.A.; Pierre, V.C. The basis for the molecular recognition and the selective time-gated luminescence detection of ATP and GTP by a lanthanide complex. Chem. Sci. 2013, 4, 4052–4060. [Google Scholar] [CrossRef]
- Mizukami, S.; Agano, T.; Urano, Y.; Odani, A.; Kikuchi, K. A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application. J. Am. Chem. Soc. 2002, 124, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.E.; O’Neil, S.N.; Anslyn, E.V. Coupling Rational Design with Libraries Leads to the Production of an ATP Selective Chemosensor. J. Am. Chem. Soc. 2000, 122, 542–543. [Google Scholar] [CrossRef]
- Epstein, D.M.; Chappell, L.L.; Khalili, H.; Supkowski, R.M. Eu(III) Macrocyclic Complexes Promote Cleavage of and Bind to Models for the 5‘-Cap of mRNA. Effect of Pendent Group and a Second Metal Ion. Inorg. Chem. 2000, 39, 2130–2134. [Google Scholar] [CrossRef]
- Shao, N.; Jin, J.; Wang, G.; Zhang, Y.; Yang, R.; Yuan, J. Europium(iii) complex-based luminescent sensing probes for multi-phosphate anions: Modulating selectivity by ligand choice. Chem. Commun. 2008, 1127–1129. [Google Scholar] [CrossRef]
- Butler, S.J. Ratiometric Detection of Adenosine Triphosphate (ATP) in Water and Real-Time Monitoring of Apyrase Activity with a Tripodal Zinc Complex. Chem. Eur. J. 2014, 20, 15768–15774. [Google Scholar] [CrossRef]
- Rao, A.S.; Kim, D.; Nam, H.; Jo, H.; Kim, K.H.; Ban, C.; Ahn, K.H. A turn-on two-photonfluorescent probe for ATP and ADP. Chem. Commun. 2012, 48, 3206–3208. [Google Scholar]
- Kaur, J.; Singh, P. ATP selective acridone based fluorescent probes for monitoring of metabolic events. Chem. Commun. 2011, 47, 4472–4474. [Google Scholar] [CrossRef]
- Moro, A.J.; Cywinski, P.J.; Korsten, S.; Mohr, G.J. An ATP fluorescent chemosensor based on a Zn(ii)-complexed dipicolylaminereceptor coupled with a naphthalimidechromophore. Chem. Commun. 2010, 46, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Mahato, P.; Ghosh, A.; Mishra, S.K.; Shrivastav, A.; Mishra, S.; Das, A. Zn(II) based colorimetric sensor for ATP and its use as a viable staining agent in pure aqueous media of pH 7.2. Chem. Commun. 2010, 46, 9134–9136. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.; Liu, X.; Jolliffe, K.A. Anion recognition and sensing with Zn(ii)–dipicolylamine complexes. Chem. Soc. Rev. 2012, 41, 4928–4965. [Google Scholar] [CrossRef] [PubMed]
- Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. J. Am. Chem. Soc. 2008, 130, 12095–12101. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, Z.; Yoon, J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: Highlighted research during 2004–2010. Chem. Soc. Rev. 2011, 40, 2222–2235. [Google Scholar] [CrossRef]
- Santos-Figueroa, E.L.; Moragues, M.E.; Climent, E.; Agostini, A.; Martınez-Manez, R.; Sancenon, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 2013, 42, 3489–3613. [Google Scholar] [CrossRef]
- Xu, Z.; Singh, N.J.; Lim, J.; Pan, J.; Kim, H.N.; Park, S.; Kim, K.S.; Yoon, J. Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH. J. Am. Chem. Soc. 2009, 131, 15528–15533. [Google Scholar] [CrossRef]
- Montgomery, C.P.; Murray, B.S.; New, E.J.; Pal, R.; Parker, D. Cell-Penetrating Metal Complex Optical Probes: Targeted and Responsive Systems Based on Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 925–937. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Comby, S.; Chauvin, A.-S.; Vandevyver, C.D.B. New opportunities for lanthanide luminescence. J. Rare. Earths. 2007, 25, 257–274. [Google Scholar]
- Comby, S.; Surender, E.M.; Kotova, O.; Truman, L.K.; Molloy, J.K.; Gunnalaugsson, T. Lanthanide-Functionalized Nanoparticles as MRI and Luminescent Probes for Sensing and/or Imaging Applications. Inorg. Chem. 2014, 53, 1867–1879. [Google Scholar] [CrossRef]
- Major, J.L.; Meade, T.J. Bioresponsive, Cell-Penetrating, and Multimeric MR Contrast Agents. Acc. Chem. Res. 2009, 42, 893–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, E.J.; Datta, A.; Jocher, C.J.; Raymond, K.N. High-relaxivity MRI contrast agents: Where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 2008, 47, 8568–8580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Caravan, P. Protein-Targeted Gadolinium-Based Magnetic Resonance Imaging (MRI) Contrast Agents: Design and Mechanism of Action. Acc. Chem. Res. 2009, 42, 851–862. [Google Scholar] [CrossRef]
- Bottrill, M.; Kwok, L.; Long, N.J. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 2006, 35, 557–571. [Google Scholar] [CrossRef]
- Doble, D.M.J.; Melchior, M.; O’Sullivan, B.; Siering, C.; Xu, J.; Pierre, V.C.; Raymond, K.N. Toward Optimized High-Relaxivity MRI Agents: The Effect of Ligand Basicity on the Thermodynamic Stability of Hexadentate Hydroxypyridonate/Catecholate Gadolinium(III) Complexes. Inorg. Chem. 2003, 42, 4930–4937. [Google Scholar] [CrossRef]
- New, E.J.; Parker, D.; Peacock, R.D. Spin state tuning of non-heme iron-catalyzed hydrocarbon oxidations: Participation of FeIII–OOH and FeV[double bond, length as m-dash]O intermediates. Dalton Trans. 2009, 38, 672–679. [Google Scholar] [CrossRef]
- Smith, D.G.; Mcmahon, B.K.; Pal, R.; Parker, D. Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes. Chem. Commun. 2012, 48, 8520–8522. [Google Scholar] [CrossRef]
- Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S. Intracellular pH and inorganic phosphate content of heart in vivo: A 31P-NMR study. Am. J. Physiol. Heart Circ. Physiol. 1988, 255, H189–H196. [Google Scholar] [CrossRef]
- Heipertz, R.; Eickhoff, K.; Karstens, K.H. Cerebrospinal fluid concentrations of magnesium and inorganic phophate in epilepsy. J. Neurol. Sci. 1979, 41, 55–60. [Google Scholar] [CrossRef]
- Butler, S.J.; Parker, D. Anion binding in water at lanthanide centres: From structure and selectivity to signalling and sensing. Chem. Soc. Rev. 2015, 42, 1652–1666. [Google Scholar] [CrossRef] [PubMed]
- Schferling, M.; Wolfbeis, O.S. Europium Tetracycline as a Luminescent Probe for Nucleoside Phosphates and Its Application to the Determination of Kinase Activity. Chem. Eur. J. 2007, 13, 4342–4349. [Google Scholar] [CrossRef]
- Duerkop, A.; Turel, M.; Lobnik, A.; Wolfbeis, O.S. Microtiter plate assay for phosphate using a europium–tetracycline complex as a sensitive luminescent probe. Anal. Chim. Acta. 2006, 555, 292–298. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 2011, 18, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Nadella, S.; Selvakumar, P.M.; Suresh, E.; Subramanian, P.S.; Albrecht, M.; Giese, M.; Fröhlich, R. Lanthanide(III) Complexes of Bis-semicarbazone and Bis-imine-Substituted Phenanthroline Ligands: Solid-State Structures, Photophysical Properties, and Anion Sensing. Chem. Eur. J. 2012, 18, 16784–16792. [Google Scholar] [CrossRef]
- Nadella, S.; Sahoo, J.; Subramanian, P.S.; Sahu, A.; Mishra, S.; Albrecht, M. Sensing of Phosphates by Using Luminescent EuIII and TbIII Complexes: Application to the Microalgal Cell Chlorella vulgaris. Chem. Eur. J. 2014, 20, 6047–6053. [Google Scholar] [CrossRef] [PubMed]
- Shavaleev, N.M.; Scopelliti, R.; Gumy, F.; Bunzli, J.-C.G. Benzothiazole- and Benzoxazole-Substituted Pyridine-2-Carboxylates as Efficient Sensitizers of Europium Luminescence. Inorg. Chem. 2009, 48, 6178–6191. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, N.; Bhalla, V. Highly selective fluorescent probe for detection and visualization of palladium ions in mixed aqueous media. RSC Adv. 2013, 3, 1097–1102. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Gole, B.; Bar, A.K.; Mukherjee, P.S. Modification of Extended Open Frameworks with Fluorescent Tags for Sensing Explosives: Competition between Size Selectivity and Electron Deficiency. Chem. Eur. J. 2014, 20, 2276–2291. [Google Scholar] [CrossRef]
- Gole, B.; Bar, A.K.; Mukherjee, P.S. Multicomponent Assembly of Fluorescent-Tag Functionalized Ligands in Metal–Organic Frameworks for Sensing Explosives. Chem. Eur. J. 2014, 20, 13321–13336. [Google Scholar] [CrossRef]
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Raju, M.; Patel, T.J.; Nair, R.R.; Chatterjee, P.B. Xanthurenic acid: A natural ionophore with high selectivity and sensitivity for potassium ions in an aqueous solution. New J. Chem. 2016, 40, 1930–1934. [Google Scholar] [CrossRef]
- Raju, M.; Nair, R.R.; Raval, I.H.; Haldar, S.; Chatterjee, P.B. Reporting a new siderophore based Ca2+ selective chemosensor that works as a staining agent in the live organism Artemia. Analyst 2015, 140, 7799–7809. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, X.; Huang, R.; Yang, L.X.; Tang, X.; Dou, W.; Zhao, Q.; Liu, W. A highly fluorescent chemosensor for Zn2+ and the recognition research on distinguishing Zn2+ from Cd2+. Dalton Trans. 2014, 43, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Gusev, A.N.; Hasegawa, M.; Nishchymenko, G.A.F.; Shul’gin, V.B.; Meshkova, S.; Doga, P.; Linert, W. Ln(iii) complexes of a bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)methaneligand: Synthesis, structure and fluorescent properties. Dalton Trans. 2013, 42, 6936–6943. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, W.D., Jr.; Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 1979, 101, 334–340. [Google Scholar]
- Beeby, A.; Clarkson, I.M.; Dickins, R.S.; Faulkner, S.; Parker, D.; Royle, L.; de Sousa, A.S.; Williams, J.A.G.; Woods, M. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: An improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. 1999, 2, 493–503. [Google Scholar] [CrossRef]
- Zhang, P.; Kimura, T.; Yoshida, Z. Luminescence Study on the Inner-Sphere Hydration Number of Lanthanide(III) Ions in Neutral Organo-Phosphorus Complexes. Solvent Extr. Ion. Exch. 2004, 22, 933–945. [Google Scholar] [CrossRef]
- Dos Santos, C.M.G.; Gunnlaugsson, T. Exploring the luminescent sensing of anions by the use of an urea functionalised 1,10-phenanthroline (phen)-based (3:1) Eu(III) complex. Supramol. Chem. 2009, 21, 173–180. [Google Scholar] [CrossRef]
- Bridou, L.; Nielsen, L.G.; Sørensen, T.J. Using europium(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-triacedic acid Eu.DO3A as a luminescent sensor for bicarbonate. J. Rare Earths 2020, 38, 498–505. [Google Scholar] [CrossRef]
- McMahon, B.; Mauer, P.; McCoy, C.P.; Lee, T.C.; Gunnlaugsson, T. Selective Imaging of Damaged Bone Structure (Microcracks) Using a Targeting Supramolecular Eu(III) Complex As a Lanthanide Luminescent Contrast Agent. J. Am. Chem. Soc. 2009, 131, 17542–17543. [Google Scholar] [CrossRef] [PubMed]
- Law, G.-L.; Man, C.; Parker, D.; Walton, J.W. Observation of the selective staining of chromosomal DNA in dividing cells using a luminescent terbium(iii) complex. Chem. Commun. 2010, 46, 2391–2393. [Google Scholar] [CrossRef] [PubMed]
Complex | τH2O (ms) | τD2O(ms) | qcorra | Coordination Number |
---|---|---|---|---|
1 | 0.22 | 1.56 | 4.38 | 10 |
2 | 0.15 | 1.11 | 3.70 * | 10 |
3 | 0.47 | 0.73 | 3.50 | 9 |
Species | 1 + HPO42− (1:1) | 1 + HPO42− (1:2) | 1 + HPO42− (1:10) |
---|---|---|---|
τ(H2O) (ms) | 0.41 | 0.60 | 0.62 |
τ(D2O) (ms) | 1.72 | 1.90 | 1.91 |
qcorr | 1.98 | 1.12 | 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, J.; Jaiswar, S.; Chatterjee, P.B.; Subramanian, P.S.; Jena, H.S. Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. Nanomaterials 2021, 11, 53. https://doi.org/10.3390/nano11010053
Sahoo J, Jaiswar S, Chatterjee PB, Subramanian PS, Jena HS. Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. Nanomaterials. 2021; 11(1):53. https://doi.org/10.3390/nano11010053
Chicago/Turabian StyleSahoo, Jashobanta, Santlal Jaiswar, Pabitra B. Chatterjee, Palani S. Subramanian, and Himanshu Sekhar Jena. 2021. "Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes" Nanomaterials 11, no. 1: 53. https://doi.org/10.3390/nano11010053
APA StyleSahoo, J., Jaiswar, S., Chatterjee, P. B., Subramanian, P. S., & Jena, H. S. (2021). Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. Nanomaterials, 11(1), 53. https://doi.org/10.3390/nano11010053