Molecular Junctions Enhancing Thermal Transport within Graphene Polymer Nanocomposite: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Methods
3. Modelling
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PDMS | Polydimethylsiloxane |
MD | Molecular Dynamics |
NEMD | Non-Equilibrium Molecular Dynamics |
NVT | Canonical statistical ensemble (constant Number of particles, Volume and Temperature) |
NVE | <+Microcanonical statistical ensemble (constant Number of particles, Volume and Energy) |
NPT | Isothermal–isobaric statistical ensemble (constant Number of atoms, Pressure and Temperature) |
C5OP | 1,5-diphenoxypentane |
BP | Biphenyl |
ACN | Anthracene |
References
- Hussain, A.R.J.; Alahyari, A.A.; Eastman, S.A.; Thibaud-Erkey, C.; Johnston, S.; Sobkowicz, M.J. Review of polymers for heat exchanger applications: Factors concerning thermal conductivity. Appl. Therm. Eng. 2017, 113, 1118–1127. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Chen, J. Thermal Transport in Conductive Polymer–Based Materials. Adv. Funct. Mater. 2019, 30, 1904704. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Colonna, S.; Battegazzore, D.; Eleuteri, M.; Arrigo, R.; Fina, A. Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites. Nanomaterials 2020, 10, 2167. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, S.; Kargar, F.; Wright, D.; Huang, C.Y.T.; Mohammadzadeh, A.; Barani, Z.; Salgado, R.; Balandin, A.A. Noncuring graphene thermal interface materials for advanced electronics. Adv. Electron. Mater. 2020, 6, 1901303. [Google Scholar] [CrossRef]
- Lewis, J.S.; Barani, Z.; Magana, A.S.; Kargar, F.; Balandin, A.A. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater. Res. Express 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, N.; Zhou, L.; Yan, C. Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains. Carbon 2015, 85, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhan, H.F.; Xiang, Y.; Yang, C.; Wang, C.M.; Zhang, Y.Y. Effect of Covalent Functionalization on Thermal Transport across Graphene-Polymer Interfaces. J. Phys. Chem. C 2015, 119, 12731–12738. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Bigdeli, M.B.; Fasano, M. Thermal transmittance in graphene based networks for polymer matrix composites. Int. J. Therm. Sci. 2017, 117, 98–105. [Google Scholar] [CrossRef]
- Varshney, V.; Lee, J.; Roy, A.K.; Farmer, B.L. Modeling of interface thermal conductance in longitudinally connected carbon nanotube junctions. J. Appl. Phys. 2011, 109, 084913. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.C.; Yue, Y.A. Molecular dynamics study on thermal transport at carbon nanotube interface junctions: Effects of mechanical force and chemical functionalization. Int. J. Heat Mass Transf. 2016, 103, 1058–1064. [Google Scholar] [CrossRef]
- Fasano, M.; Bigdeli, M.B.; Sereshk, M.R.V.; Chiavazzo, E.; Asinari, P. Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest. Renew. Sust. Energy Rev. 2015, 41, 1028–1036. [Google Scholar] [CrossRef]
- Li, Q.; Duchemin, I.; Xiong, S.Y.; Solomon, G.C.; Donadio, D. Mechanical Tuning of Thermal Transport in a Molecular Junction. J. Phys. Chem. C 2015, 119, 24636–24642. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, A.; Saracco, G.; Fina, A. Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains. Comput. Mater. Sci. 2018, 142, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.T.; Wang, J.S. Quantum phonon transport of molecular junctions amide-linked with carbon nanotubes: A first-principles study. Phys. Rev. B 2008, 78, 235436. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, A.; Bernal, M.M.; Martinez, D.; Mortazavi, B.; Saracco, G.; Fina, A. Aromatic Molecular Junctions between Graphene Sheets: A Molecular Dynamics Screening for Enhanced Thermal Conductance. RSC Adv. 2019, 9, 15573–15581. [Google Scholar] [CrossRef] [Green Version]
- Martinez Gutierrez, D.; Di Pierro, A.; Pecchia, A.; Sandonas, L.M.; Gutierrez, R.; Bernal, M.; Mortazavi, B.; Cuniberti, G.; Saracco, G.; Fina, A. Thermal Bridging of Graphene Nanosheets via Covalent Molecular Junctions: A Non-Equilibrium Green’s Functions–Density Functional Tight-Binding Study. Nano Res. 2019, 12, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Zhang, Y.; Wang, N.; Samani, M.K.; Ni, Y.; Mijbil, Z.Y.; Edwards, M.; Xiong, S.; Saaskilahti, K.; Murugesan, M.; et al. Functionalization mediates heat transport in graphene nanoflakes. Nat. Commun 2016, 7, 11281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, M.M.; Di Pierro, A.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A. Edge-Grafted Molecular Junctions between Graphene Nanoplatelets: Applied Chemistry to Enhance Heat Transfer in Nanomaterials. Adv. Funct. Mater. 2018, 28, 1706954. [Google Scholar] [CrossRef] [Green Version]
- Nika, D.L.; Balandin, A.A. Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 2017, 80, 036502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balandin, A.A. Phononics of Graphene and Related Materials. ACS Nano 2020, 14, 5170–5178. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423. [Google Scholar] [CrossRef] [Green Version]
- Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082–6085. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209. [Google Scholar] [CrossRef] [Green Version]
- Alder, B.J.; Wainwright, T.E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys. 1959, 31, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Cao, A. Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. J. Appl. Phys. 2012, 111, 083528. [Google Scholar] [CrossRef]
- Mortazavi, B.; Ahzi, S. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon 2013, 63, 460–470. [Google Scholar] [CrossRef]
- Mortazavi, B.; Rabczuk, T. Multiscale modeling of heat conduction in graphene laminates. Carbon 2015, 85, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Madkour, T.M.; Mark, J. Polymer Data Handbook; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Sun, H.; Rigby, D. Polysiloxanes: Ab initio force field and structural, conformational and thermophysical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 1301–1323. [Google Scholar] [CrossRef]
- Luo, T.; Esfarjani, K.; Shiomi, J.; Henry, A.; Chen, G. Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane. J. Appl. Phys. 2011, 109, 074321. [Google Scholar] [CrossRef] [Green Version]
- Boland, C.S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M.S.; Mobius, M.E.; et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Liu, F.; Song, S.; Xue, D.; Zhang, H. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, J.; Meng, X.; Monroe, C.; Huang, Y.; Zuo, J.M. Free folding of suspended graphene sheets by random mechanical stimulation. Phys. Rev. Lett 2010, 104, 166805. [Google Scholar] [CrossRef]
- Wang, H.; Tian, H.; Wang, S.; Zheng, W.; Liu, Y. Simple and eco-friendly solvothermal synthesis of luminescent reduced graphene oxide small sheets. Mater. Lett. 2012, 78, 170–173. [Google Scholar] [CrossRef]
Linker Type | Average Value | Thermostat Upper/Lower Branch Variation | Replica Variation | Linker Gain |
---|---|---|---|---|
[eV/ps] | [eV/ps] | [eV/ps] | [%] | |
No linkers | 1.47 | ±0.07 | ±0.02 | − |
C5OP | 1.53 | ±0.12 | ±0.09 | +4 |
BP | 1.65 | ±0.14 | ±0.08 | +12 |
ACN | 1.78 | ±0.11 | ±0.06 | +21 |
Linker Type | Average Thermal Jump ± Replica Variation [K] | Ratio to “No Linkers” | Thermal Conductance [MW m−2 K−1] | Ratio to “No Linkers” |
---|---|---|---|---|
No linkers | 8.65 ± 0.57 | 1.00 | 288 ± 21 | 1.00 |
C5OP | 7.46 ± 0.31 | 0.86 | 346 ± 26 | 1.20 |
BP | 5.78 ± 0.40 | 0.67 | 484 ± 55 | 1.68 |
ACN | 2.03 ± 0.32 | 0.23 | 1363 ± 18 | 4.73 |
Junction Type | Energy Flux [eV/ps] | ||
---|---|---|---|
Cumulative Calculation (This Work) | Self-Standing Linkers Contribution (from [19]) | No Linkers (This Work) + Self-Standing Linkers Contribution | |
No linkers | 1.47 ± 0.07 | - | - |
C5OP | 1.53 ± 0.12 | 0.05 | 1.47 + 0.05 = 1.52 (−0.6%) |
BP | 1.65 ± 0.14 | 0.17 | 1.47 + 0.17 = 1.64 (−0.6%) |
ACN | 1.78 ± 0.11 | 0.35 | 1.47 + 0.35 = 1.82 (+2.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pierro, A.; Mortazavi, B.; Fina, A. Molecular Junctions Enhancing Thermal Transport within Graphene Polymer Nanocomposite: A Molecular Dynamics Study. Nanomaterials 2021, 11, 2480. https://doi.org/10.3390/nano11102480
Di Pierro A, Mortazavi B, Fina A. Molecular Junctions Enhancing Thermal Transport within Graphene Polymer Nanocomposite: A Molecular Dynamics Study. Nanomaterials. 2021; 11(10):2480. https://doi.org/10.3390/nano11102480
Chicago/Turabian StyleDi Pierro, Alessandro, Bohayra Mortazavi, and Alberto Fina. 2021. "Molecular Junctions Enhancing Thermal Transport within Graphene Polymer Nanocomposite: A Molecular Dynamics Study" Nanomaterials 11, no. 10: 2480. https://doi.org/10.3390/nano11102480
APA StyleDi Pierro, A., Mortazavi, B., & Fina, A. (2021). Molecular Junctions Enhancing Thermal Transport within Graphene Polymer Nanocomposite: A Molecular Dynamics Study. Nanomaterials, 11(10), 2480. https://doi.org/10.3390/nano11102480