The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appenzeller, J. Carbon nanotubes for high-performance electronics–progress and prospect. Proc. IEEE 2008, 96, 201–211. [Google Scholar] [CrossRef]
- Hill, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A. The road to carbon nanotube transistors. Nature 2013, 498, 443–444. [Google Scholar] [CrossRef]
- Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronicsmoving forward. Chem. Soc. Rev. 2013, 42, 2592–2609. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.; Campbell, E. Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 2011, 110, 111101. [Google Scholar] [CrossRef] [Green Version]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Franklin, N.W.; Chen, R.J.; Dai, H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 2000, 331, 35–41. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Ding, L.; Liang, X.; Xu, H.; Shen, J.; Chen, Q.; Cui, R.; Li, Y.; Peng, L. High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 2008, 92, 133117. [Google Scholar] [CrossRef]
- Buonocore, F.; Trani, F.; Ninno, D.; Matteo, A.D.; Cantele, G.; Iadonisi, G. Ab initio calculations of electron affinity and ionization potential of carbon nanotubes. Nanotechnology 2008, 19, 025711. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Lee, M. Dependence of workfunction on the geometries of single-walled carbon nanotubes. Nanotechnology 2004, 15, 480–484. [Google Scholar] [CrossRef]
- Zhi, C.; Bai, X.; Wang, E. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 2002, 81, 1690–1692. [Google Scholar] [CrossRef]
- Kvashnin, D.G.; Sorokin, P.B.; Brüning, J.W.; Chernozatonskii, L.A. The impact of edges and dopants on the work function of graphene nanostructures: The way to high electronic emission from pure carbon medium. Appl. Phys. Lett. 2013, 102, 183112. [Google Scholar] [CrossRef]
- Son, J.; Lee, S.; Kim, S.; Park, B.C.; Lee, H.K.; Kim, S.; Kim, J.H.; Hong, B.H.; Hong, J. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat. Commun. 2016, 7, 13261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuyama, S.; Okuyama, K.; Takinami, N.; Matsushita, K.; Kumagai, Y. Current vs voltage characteristics of Al-Al2O3-Pd tunnel junction hydrogen sensor. Jpn. J. Appl. Phys. 1996, 35, 2266–2270. [Google Scholar] [CrossRef]
- Zeradjanin, A.; Vimalanandan, A.; Polymeros, G.; Topalov, A.; Mayrhofer, K.; Rohwerderb, M. Balanced work function as a driver for facile hydrogen evolution reaction—comprehension and experimental assessment of interfacial catalytic descriptor. Phys. Chem. Chem. Phys. 2017, 19, 17019–17027. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, K.; Surplice, N. The effects of hydrogen sorption on the resistance and work-function of titanium films at 290 K. J. Phys. D. 1984, 17, 387–398. [Google Scholar] [CrossRef]
- Kim, K.S.; Bae, D.J.; Kim, J.R.; Park, K.A.; Lim, S.C.; Kim, J.J.; Choi, W.B.; Park, C.Y.; Lee, Y.H. Modification of Electronic Structures of a Carbon Nanotube by Hydrogen Functionalization. Adv. Mater. 2002, 14, 1818–1821. [Google Scholar] [CrossRef]
- Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Mann, D.; Li, X.; Dai, H. Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 6026–6027. [Google Scholar] [CrossRef] [Green Version]
- Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; Mceuen, P.; Lundstrom, M.; Dai, H. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246. [Google Scholar] [CrossRef]
- Tang, J.; Cao, Q.; Farmer, D.B.; Tulevski, G.; Han, S. High-performance carbon nanotube complementary logic with end-bonded contacts. IEEE Trans. Electron Devices 2017, 64, 2744–2750. [Google Scholar] [CrossRef]
- Yang, Y.; Yarmoff, J. Effects of adsorbates on charge exchange in Li+ ion scattering from Ni(100). J. Vac. Sci. Technol. 2003, 21, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Wipf, H. Hydrogen in Metals II. Topics in Applied Physics; Springer: Berlin, Germany, 1978; Volume 29, pp. 273–304. [Google Scholar]
- Chino, K. Behavior of Al-Si Schottky barrier diodes under heat treatment. Solid State Electron. 1973, 16, 119–121. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Xiao, Z.; Reng, X. Study of adsorption of hydrogen on Al, Cu, Mg, Ti surfaces in Al alloy melt via first principles calculation. Metals 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Uchino, T.; Ayre, G.; Smith, D.C.; Hutchison, J.L.; de Groot, C.H.; Ashburn, P. Growth of carbon nanotubes on HfO2 towards highly sensitive nano-sensors. Jpn. J. Appl. Phys. 2010, 48, 04DN11-1-4. [Google Scholar]
- Uchino, T.; Ayre, G.; Smith, D.C.; Hutchison, J.L.; de Groot, C.H.; Ashburn, P. Growth of single-walled carbon nanotubes using Germanium nanocrystals formed by implantation. J. Electrochem. Soc. 2009, 156, K144–K148. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Hafner, J.; Lieber, C.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121. [Google Scholar] [CrossRef]
- McEuen, P.; Fuhrer, M.; Hongkun, P. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Uchino, T.; Ayre, G.; Smith, D.C.; Hutchison, J.L.; de Groot, C.H.; Ashburn, P. Metal-catalyst-free growth of carbon nanotubes and their application in field-effect transistors. Electrochem. Solid State Lett. 2011, 14, K21–K23. [Google Scholar] [CrossRef]
- Meric, I.; Han, M.; Young, A.; Ozyilmaz, B.; Kim, P.; Shepard, K. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef]
- Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801. [Google Scholar] [CrossRef]
- Durkop, T.; Getty, S.; Cobas, E.; Fuhrer, M. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39. [Google Scholar] [CrossRef]
- Pisana, S.; Zhang, C.; Ducati, C.; Hofmann, S.; Robertson, J. Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors. IEEE Trans. Nanotechnol. 2008, 7, 458–462. [Google Scholar] [CrossRef]
- Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.; Avouris, P. The role of metal. nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502. [Google Scholar] [PubMed] [Green Version]
- Yang, M.; Teo, K.; Milne, W.; Hasko, D. Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts. Appl. Phys. Lett. 2005, 87, 253116. [Google Scholar] [CrossRef]
- Chen, C.; Xu, D.; Kong, E.; Zhang, Y. Multichannel carbon-nanotube FETs and complementary logic gates with nanowelded contacts. IEEE Electron Device Lett. 2006, 27, 852–855. [Google Scholar] [CrossRef]
- Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456. [Google Scholar] [CrossRef]
- Roch, A.; Greifzu, M.; Talens, E.R.; Stepien, L.; Roch, T.; Hege, J.; Nong, N.; Schmiel, T.; Dani, I.; Leyens, C.; et al. Ambient effects on the electrical conductivity of carbon nanotubes. Carbon 2015, 95, 347–353. [Google Scholar] [CrossRef]
- Li, J.; Furuta, T.; Goto, H.; Ohashi, T.; Fujiwara, Y.; Yip, S. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys. 2003, 119, 2376–2385. [Google Scholar] [CrossRef]
- Su, W.S.; Leung, T.C.; Chan, C.T. Work function of single-walled and multiwalled carbon nanotubes: First-principles study. Phys. Rev. 2007, 76, 235413. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchino, T.; Ayre, G.N.; Smith, D.C.; Hutchison, J.L.; de Groot, C.H.; Ashburn, P. The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors. Nanomaterials 2021, 11, 2481. https://doi.org/10.3390/nano11102481
Uchino T, Ayre GN, Smith DC, Hutchison JL, de Groot CH, Ashburn P. The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors. Nanomaterials. 2021; 11(10):2481. https://doi.org/10.3390/nano11102481
Chicago/Turabian StyleUchino, Takashi, Greg N. Ayre, David C. Smith, John L. Hutchison, C. H. de Groot, and Peter Ashburn. 2021. "The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors" Nanomaterials 11, no. 10: 2481. https://doi.org/10.3390/nano11102481
APA StyleUchino, T., Ayre, G. N., Smith, D. C., Hutchison, J. L., de Groot, C. H., & Ashburn, P. (2021). The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors. Nanomaterials, 11(10), 2481. https://doi.org/10.3390/nano11102481