Magnetism in Au-Supported Planar Silicene
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
PJT | Pseudo-Jahn-Teller |
DFT | Density Functional Theory |
SO | spin-orbit |
AFM | antiferromagnetic |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Miro, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 12, 11509. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, 6298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molle, A. Xenes: A new emerging two-dimensional materials platform for nanoelectronics. ECSP Trans. 2016, 75, 163. [Google Scholar] [CrossRef]
- Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 2014, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S.C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163. [Google Scholar] [CrossRef]
- Krawiec, M. Functionalization of group-14 two-dimensional materials. J. Phys. Condens. Matter 2018, 30, 233003. [Google Scholar] [CrossRef]
- Jose, D.; Datta, A. Understanding of the Buckling Distortions in Silicene. J. Phys. Chem. C 2012, 116, 24639. [Google Scholar] [CrossRef]
- Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef]
- Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501. [Google Scholar] [CrossRef]
- Feng, B.; Ding, Z.; Meng, S.; Yao, Y.; He, X.; Cheng, P.; Chen, L.; Wu, K. Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111). Nano Lett. 2012, 12, 3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of silicene grown on Ag(111). Appl. Phys. Express 2012, 5, 045802. [Google Scholar] [CrossRef]
- Jamgotchian, H.; Colington, Y.; Hamazaouri, N.; Ealet, B.; Hoarau, J.Y.; Aufray, B.; Biberian, J.P. Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature. J. Phys.: Condens. Matter 2012, 24, 172001. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W.A.; et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, T.; Suehara, S.; Otani, S. Silicene on Zirconium Carbide (111). J. Phys. Chem. C 2014, 118, 23049. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.F.; Zhang, Y.Y.; Xu, W.; Que, Y.; Li, E.; Pan, J.B.; Wang, Y.L.; Liu, Y.; Du, S.X.; et al. Sequence of silicon monolayer structures grown on a Ru surface: From a herringbone structure to silicene. Nano Lett. 2017, 17, 1161. [Google Scholar] [CrossRef]
- De Padova, P.; Feng, H.; Zhuang, J.; Li, Z.; Generosi, A.; Paci, B.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Krawiec, M.; et al. Synthesis of multilayer silicene on Si(111)√3 × √3-Ag. J. Phys. Chem. C 2017, 121, 27182. [Google Scholar] [CrossRef]
- Stępniak-Dybala, A.; Krawiec, M. Formation of silicene on ultra-thin Pb(111) films. J. Phys. Chem. C 2019, 123, 17019. [Google Scholar] [CrossRef]
- Stępniak-Dybala, A.; Dyniec, P.; Kopciuszyński, M.; Zdyb, R.; Jałochowski, M.; Krawiec, M. Planar Silicene: A New Silicon Allotrope Epitaxially Grown by Segregation. Adv. Funct. Mater. 2019, 29, 1906053. [Google Scholar] [CrossRef]
- Leoni, T.; Hogan, C.; Zhang, K.; Mansour, M.D.; Bernard, R.; Resta, A.; Colonna, S.; Borensztein, Y.; Ronci, F.; Pevot, G.; et al. Demonstration of the existence of dumbell silicene: A stable two-dimensional allotrope of silicon. J. Phys. C 2021, 125, 17906. [Google Scholar]
- Cahangirov, S.; Topsakal, M.; Aktürk, E.; Sahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, D.; Datta, A. Structures and Chemical Properties of Silicene: Unlike Graphene. Acc. Chem. Res. 2014, 47, 593. [Google Scholar] [CrossRef]
- Pratik, S.M.; Nijamudheen, A.; Datta, A. Topochemical Transformations of CaX2 (X = C, Si, Ge) to Form Free-Standing Two-Dimensional Materials. Chem. Eur. J. 2015, 21, 18454. [Google Scholar] [CrossRef]
- Jaroch, T.; Krawiec, M.; Zdyb, R. Layered heterostructure of planar and buckled phases of silicene. 2D Mater. 2021, 8, 035038. [Google Scholar] [CrossRef]
- Nazzari, D.; Genser, J.; Ritter, V.; Bethge, O.; Bertagnolli, E.; Ramer, G.; Lendl, B.; Watanabe, K.; Taniguchi, T.; Rurali, R.; et al. Highly Biaxially Strained Silicene on Au(111). J. Phys. Chem. C 2021, 125, 9973. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C.C.; Zhong, H.; Han, N.; Lu, J.; et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113. [Google Scholar] [CrossRef]
- Drummond, N.D.; Zolyomi, V.; Falko, V.I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227. [Google Scholar] [CrossRef]
- Grazianetti, C.; Cinquanta, E.; Tao, L.; De Padova, P.; Quaresima, C.; Ottaviani, C.; Akinwande, D.; Molle, A. Crossover between multilayer silicene and diamond-like growth regime. ACS Nano 2017, 11, 3376. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, 706. [Google Scholar] [CrossRef]
- Sethulakshmi, N.; Mishra, A.; Ajayan, P.M.; Kawazoe, Y.; Roy, A.K.; Singh, A.K.; Tiwary, C.S. Magnetism in two-dimensional materials beyond graphene. Mater. Today 2019, 27, 107. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, P.; Xu, S.; Zhang, X.; Zhang, H. Recent advances in two-dimensional ferromagnetism: Materials synthesis, physical properties and device applications. Nanoscale 2020, 12, 2309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Quhe, R.G.; Yu, D.P.; Lu, J. Silicene spintronics—A concise review. Chin. Phys. B 2015, 24, 087201. [Google Scholar] [CrossRef]
- Zhang, Q.; Chan, K.S.; Li, J. Electrically controllable sudden reversals in spin and valley polarization in silicene. Sci. Rep. 2016, 6, 33701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Bournel, A.; Wang, Y.; Lin, X.; Zhang, Y.; Zhao, W. Silicene spintronics: Fe(111)/silicene system for efficient spin injection. Appl. Phys. Lett. 2017, 111, 182408. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuo, Z.; Wu, X.; Yang, J. Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. Nano Lett. 2017, 17, 2771. [Google Scholar] [CrossRef]
- Tomkachev, A.M.; Averyanov, D.V.; Parfenov, O.E.; Taldenkov, A.N.; Karateev, I.A.; Sokolov, I.S.; Kondratev, O.A.; Storchak, V.G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672. [Google Scholar]
- Liu, Y.S.; Dong, Y.J.; Zhang, J.; Yu, H.L.; Feng, J.F.; Yang, X.F. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons. Nanotechnology 2018, 29, 125201. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augumented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augumented-Wave Metchod. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, L.F.; Liu, W.M. Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 2013, 3, 2908. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Singh, N.; Schwingenschlögl, U. Prediction of a quantum anomalous Hall state in Co-decorated silicene. Phys. Rev. B 2014, 89, 035409. [Google Scholar] [CrossRef] [Green Version]
- Sahin, H.; Peeters, F.M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 2013, 87, 085423. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Ni, J. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B 2012, 86, 075440. [Google Scholar] [CrossRef]
- Huang, L.F.; Ni, M.Y.; Zhang, G.R.; Zhou, W.H.; Li, Y.G.; Zheng, X.H.; Zeng, Z. Modulation of the thermodynamic, kinetic, and magnetic properties of the hydrogen monomer on graphene by charge doping. J. Chem. Phys. 2011, 135, 064705. [Google Scholar] [CrossRef] [Green Version]
- Podsiadły-Paszkowska, A.; Krawiec, M. Electrical and mechanical controlling of the kinetic and magnetic properties of hydrogen atoms on free-standing silicene. J. Phys. Condens. Matter 2016, 28, 284004. [Google Scholar] [CrossRef]
Atom | N (%) | (Å) | (Å) | (Å) | (Å) | (Å) | (eV) | (e) | () |
---|---|---|---|---|---|---|---|---|---|
Fe | 2.0 | 0.87 | 2.64 | 2.32 | 2.12 | 3.15 | 6.246 | 0.33 | 0.00 |
3.1 | 1.10 | 2.64 | 2.26 | 2.18 | 2.74 | 5.722 | 0.35 | 0.00 | |
5.6 | 1.03 | 2.64 | 2.27 | 2.16 | 2.75 | 5.509 | 0.37 | 0.00 | |
12.5 | 1.09 | 2.64 | 2.27 | 2.18 | 2.76 | 5.530 | 0.34 | 0.00 | |
50.0 | 1.52 | 2.81 | 2.37 | 2.29 | 2.44 | 4.925 | 0.02 | 2.18 | |
Co | 2.0 | 1.09 | 2.62 | 2.27 | 2.17 | 2.89 | 6.922 | 0.48 | 0.00 |
3.1 | 1.23 | 2.64 | 2.23 | 2.22 | 2.84 | 6.443 | 0.58 | 0.00 | |
5.6 | 1.14 | 2.64 | 2.25 | 2.18 | 2.76 | 6.256 | 0.58 | 0.00 | |
12.5 | 1.16 | 2.64 | 2.27 | 2.20 | 2.77 | 6.164 | 0.52 | 0.00 | |
50.0 | 1.50 | 2.81 | 2.37 | 2.22 | 2.35 | 5.507 | 0.32 | 0.24 |
Atom | N (%) | (Å) | (Å) | (Å) | (Å) | (eV) | (e) | () |
---|---|---|---|---|---|---|---|---|
Fe | 2.0 | −1.22 | 2.70 | 2.29 | 2.77 | 7.410 | −0.23 | 2.82 |
3.1 | −1.35 | 2.67 | 2.34 | 2.60 | 6.874 | −0.33 | 2.45 | |
5.6 | −1.26 | 2.69 | 2.29 | 2.65 | 5.847 | −0.23 | 2.18 | |
12.5 | −1.02 | 2.68 | 2.31 | 1.92 | 6.341 | −0.26 | 1.55 | |
50.0 | 0.91 | 2.54 | 2.38 | 0.69 | 4.951 | −0.34 | 2.40 | |
Co | 2.0 | −1.05 | 2.66 | 2.21 | 2.82 | 7.929 | 0.18 | 0.00 |
3.1 | −1.18 | 2.63 | 2.26 | 2.58 | 7.318 | 0.07 | 0.00 | |
5.6 | −1.21 | 2.68 | 2.22 | 2.67 | 6.438 | 0.17 | 0.00 | |
12.5 | −1.00 | 2.68 | 2.25 | 1.91 | 6.896 | 0.11 | 0.00 | |
50.0 | 1.03 | 2.59 | 2.40 | 0.67 | 5.489 | −0.09 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawiec, M.; Stępniak-Dybala, A.; Bobyk, A.; Zdyb, R. Magnetism in Au-Supported Planar Silicene. Nanomaterials 2021, 11, 2568. https://doi.org/10.3390/nano11102568
Krawiec M, Stępniak-Dybala A, Bobyk A, Zdyb R. Magnetism in Au-Supported Planar Silicene. Nanomaterials. 2021; 11(10):2568. https://doi.org/10.3390/nano11102568
Chicago/Turabian StyleKrawiec, Mariusz, Agnieszka Stępniak-Dybala, Andrzej Bobyk, and Ryszard Zdyb. 2021. "Magnetism in Au-Supported Planar Silicene" Nanomaterials 11, no. 10: 2568. https://doi.org/10.3390/nano11102568
APA StyleKrawiec, M., Stępniak-Dybala, A., Bobyk, A., & Zdyb, R. (2021). Magnetism in Au-Supported Planar Silicene. Nanomaterials, 11(10), 2568. https://doi.org/10.3390/nano11102568