Integration Technology for Wafer-Level LiNbO3 Single-Crystal Thin Film on Silicon by Polyimide Adhesive Bonding and Chemical Mechanical Polishing
Abstract
:1. Introduction
2. Experiments
2.1. Samples Preparation
2.2. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janson, S.; Helvajian, H.; Breuer, K. MEMS, microengineering and aerospace systems. In Proceedings of the 30th Fluid Dynamics Conference, Norfolk, VA, USA, 28 June 1999–1 July 1999; American Institute of Aeronautics and Astronautics: Reston, Virginia, 1999. [Google Scholar]
- Li, Y.; Lu, Y.; Xie, B.; Chen, J.; Wang, J.; Chen, D. A Micromachined Resonant Differential Pressure Sensor. IEEE Trans. Electron Devices 2020, 67, 640–645. [Google Scholar] [CrossRef]
- Liu, H.; Pike, W.T. A micromachined angular-acceleration sensor for geophysical applications. Appl. Phys. Lett. 2016, 109, 173506. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Jauregui, L.A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y.P.; Pei, S.-S. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors Actuators B Chem. 2010, 150, 296–300. [Google Scholar] [CrossRef]
- Bourdarie, S.; Xapsos, M. The Near-Earth Space Radiation Environment. IEEE Trans. Nucl. Sci. 2008, 55, 1810–1832. [Google Scholar] [CrossRef] [Green Version]
- Broomfield, G. The effect of low-fluence neutron irradiation on silver-electroded lead-zirconate-titanate piezoelectric ceramics. J. Nucl. Mater. 1980, 91, 23–34. [Google Scholar] [CrossRef]
- Chaiken, M.F.; Blue, T.E. An Estimation of the Neutron Displacement Damage Cross Section for Ga2O3. IEEE Trans. Nucl. Sci. 2018, 65, 1147–1152. [Google Scholar] [CrossRef]
- Du, J.; Qiu, Y.; Zhang, J.; Huang, J.; Wu, Z.; Zhang, X.; Wang, Y.; Baldwin, J.K.; Fu, E. The alleviation of radiation-damage on Nb/MgO film driven by strain gradient in He ion irradiation. Appl. Surf. Sci. 2018, 465, 1014–1018. [Google Scholar] [CrossRef]
- Shea, H. Radiation sensitivity of microelectromechanical system devices. J. Microlithogr. Microfabr. Microsyst. 2009, 8, 031303. [Google Scholar] [CrossRef] [Green Version]
- Drummond, E.I. Resistance of Ti:LiNbO3 devices to ionising radiation. Electron. Lett. 1987, 23, 1214–1215. [Google Scholar] [CrossRef]
- Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E. Stability of Lithium Niobate on Irradiation at Elevated Temperature. Nucl. Technol. 1977, 36, 79–84. [Google Scholar] [CrossRef]
- Wong, K.-K. Properties of Lithium Niobate; Institution of Engineering and Technology: London, UK, 2002. [Google Scholar]
- Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344. [Google Scholar] [CrossRef]
- Wahab, Y.; Zayegh, A.; Begg, R. Silicon implementation of micro pressure sensor. In Proceedings of the 2010 International Conference on Electronic Devices, Systems and Applications, Kuala Lumpur, Malaysia, 12 April 2010–13 April 2010; pp. 232–235. [Google Scholar]
- Wu, K.; Zhang, H.; Chen, Y.; Luo, Q.; Xu, K. All-Silicon Microdisplay Using Efficient Hot-Carrier Electroluminescence in Standard 0.18μm CMOS Technology. IEEE Electron Device Lett. 2021, 42, 541–544. [Google Scholar] [CrossRef]
- Almirall, A.; Oliveri, S.; Daniau, W.; Margueron, S.; Baron, T.; Boulet, P.; Ballandras, S.; Chamaly, S.; Bartasyte, A. High-Frequency Surface Acoustic Wave Devices Based on Epitaxial Z-LiNbO3 Layers on Sapphire. Appl. Phys. Lett. 2019, 114, 162905. [Google Scholar] [CrossRef] [Green Version]
- Bartasyte, A.; Plausinaitiene, V.; Abrutis, A.; Stanionytė, S.; Margueron, S.; Boulet, P.; Kobata, T.; Uesu, Y.; Gleize, J. Identification of LiNbO3, LiNb 3O8 and Li3 NbO4 phases in thin films synthesized with different deposition techniques by means of XRD and Raman spectroscopy. J. Phys. Condens. Matter Inst. Phys. J. 2013, 25, 205901. [Google Scholar] [CrossRef]
- He, C.; Li, X.; Qiu, D.; Chen, Y.; Lu, Y.; Cui, X. Nonlinear optical polarization and heterostructure synergistically boosted the built-in electric field of CeF3/LiNbO3 for a higher photocatalytic nitrogen reduction activity. Appl. Surf. Sci. 2021, 556, 149753. [Google Scholar] [CrossRef]
- Shandilya, S.; Tomar, M.; Gupta, V. Deposition of stress free c-axis oriented LiNbO3 thin film grown on (002) ZnO coated Si substrate. J. Appl. Phys. 2012, 111, 102803. [Google Scholar] [CrossRef]
- You, P.; Lu, C.; Ye, W.; Hao, L.; Zhu, J.; Zhou, Y. Growth of highly near-c-axis oriented ferroelectric LiNbO3 thin films on Si with a ZnO buffer layer. Appl. Phys. Lett. 2013, 102, 051914. [Google Scholar] [CrossRef]
- Bai, X.; Shuai, Y.; Gong, C.; Wu, C.; Luo, W.; Böttger, R.; Zhou, S.; Zhang, W. Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations. Appl. Surf. Sci. 2018, 434, 669–673. [Google Scholar] [CrossRef]
- Pastureaud, T.; Solal, M.; Biasse, B.; Aspar, B.; Briot, J.-B.; Daniau, W.; Steichen, W.; Raphael, L.; Laude, V.; Laëns, A.; et al. High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Luo, J.; Shuai, Y.; Zhang, K.; Wang, T.; Wu, C.; Zhang, W. Infrared detector based on crystal ion sliced LiNbO3 single-crystal film with BCB bonding and thermal insulating layer. Microelectron. Eng. 2019, 213, 1–5. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, S.; Lee, k.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Xie, J.; Xin, D.; Cao, H.; Wang, C.; Zhao, Y.; Yao, L.; Ji, F.; Qiu, Y. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment. Surf. Coat. Technol. 2011, 206, 191–201. [Google Scholar] [CrossRef]
- Inoue, K.; Asai, N.; Sameshima, T. Experimental Study of the Hyper-Raman Scattering Due to Raman Inactive Lattice Vibration in SrTiO3. J. Phys. Soc. Jpn. 1981, 50, 1291–1300. [Google Scholar] [CrossRef]
- Wang, Y.; Cong, C.; Qiu, C.; Yu, T. Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS2under Uniaxial Strain. Small 2013, 9, 2857–2861. [Google Scholar] [CrossRef]
- Webster, S.; Batchelder, D.N.; Smith, D.A. Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy. Appl. Phys. Lett. 1998, 72, 1478–1480. [Google Scholar] [CrossRef]
- Klesse, W.M.; Scappucci, G.; Capellini, G.; Hartmann, J.M.; Simmons, M. Atomic layer doping of strained Ge-on-insulator thin films with high electron densities. Appl. Phys. Lett. 2013, 102, 151103. [Google Scholar] [CrossRef]
- Duo, S.; Li, M.; Zhu, M.; Zhou, Y. Resistance of polyimide/silica hybrid films to atomic oxygen attack. Surf. Coat. Technol. 2006, 200, 6671–6677. [Google Scholar] [CrossRef]
- Tzu-Chien, J.H.; Liu, Z. Solvent effect on the curing of polyimide resins. J. Appl. Polym. Sci. 2010, 46, 1821–1833. [Google Scholar]
- Moon, K.H.; Chae, B.; Kim, K.S.; Lee, S.W.; Jung, Y.M. Preparation and Characterization of Transparent Polyimide⁻Silica Composite Films Using Polyimide with Carboxylic Acid Groups. Polymers 2019, 11, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.; Hosoya, K.; Imanishi, Y.; Endo, K.; Yamamura, K. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem. Commun. 2015, 52, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Ryuzaki, D.; Hoshi, Y.; Machii, Y.; Koyama, N.; Ashizawa, T. Chemical Mechanical Polishing with Nanocolloidal Ceria Slurry for Low-Damage Planarization of Dielectric Films. Jpn. J. Appl. Phys. 2012, 51, 6502. [Google Scholar] [CrossRef]
- Fukushima, A.; Fujitani, M.; Ishikawa, K.; Numazawa, M.; Ishi, D.; Otsubo, R.; Nagatoshi, H.; Suzuki, H.; Yuasa, T.; Ezoe, Y.; et al. Grinding and chemical mechanical polishing process for micropore x-ray optics fabricated with deep reactive ion etching. Appl. Opt. 2019, 58, 5240–5247. [Google Scholar] [CrossRef]
- Stepanenko, O.; Quillier, E.; Tronche, H.; Baldi, P.; De Micheli, M. Crystallographic and Optical Properties of Z-Cut High Index Soft Proton Exchange (HISoPE) LiNbO3Waveguides. J. Light. Technol. 2016, 34, 2206–2212. [Google Scholar] [CrossRef]
- Rams, J.; Olivares, J.; Cabrera, J.M. High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients. Appl. Phys. Lett. 1997, 70, 2076–2078. [Google Scholar] [CrossRef]
- Bai, X.; Shuai, Y.; Gong, C.; Pan, X.; Zeng, H.; Wang, T.; Luo, W.; Wu, C.; Zhang, W. The electrical properties of single-crystalline Z-cut LiNbO3 thin films fabricated by crystal-ion-slicing technique. J. Mater. Sci. Mater. Electron. 2019, 30, 8996–9002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, W.; Yang, X.; Xue, G.; Xu, W.; Bi, K.; Mei, L.; Zhang, L.; Hou, X.; Chou, X. Integration Technology for Wafer-Level LiNbO3 Single-Crystal Thin Film on Silicon by Polyimide Adhesive Bonding and Chemical Mechanical Polishing. Nanomaterials 2021, 11, 2554. https://doi.org/10.3390/nano11102554
Geng W, Yang X, Xue G, Xu W, Bi K, Mei L, Zhang L, Hou X, Chou X. Integration Technology for Wafer-Level LiNbO3 Single-Crystal Thin Film on Silicon by Polyimide Adhesive Bonding and Chemical Mechanical Polishing. Nanomaterials. 2021; 11(10):2554. https://doi.org/10.3390/nano11102554
Chicago/Turabian StyleGeng, Wenping, Xiangyu Yang, Gang Xue, Wenhao Xu, Kaixi Bi, Linyu Mei, Le Zhang, Xiaojuan Hou, and Xiujian Chou. 2021. "Integration Technology for Wafer-Level LiNbO3 Single-Crystal Thin Film on Silicon by Polyimide Adhesive Bonding and Chemical Mechanical Polishing" Nanomaterials 11, no. 10: 2554. https://doi.org/10.3390/nano11102554
APA StyleGeng, W., Yang, X., Xue, G., Xu, W., Bi, K., Mei, L., Zhang, L., Hou, X., & Chou, X. (2021). Integration Technology for Wafer-Level LiNbO3 Single-Crystal Thin Film on Silicon by Polyimide Adhesive Bonding and Chemical Mechanical Polishing. Nanomaterials, 11(10), 2554. https://doi.org/10.3390/nano11102554