Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Eligibility Criteria
2.3. Studies Selection and Data Extraction
3. Results
3.1. Studies Selection
3.2. Study Characteristics
3.3. Effect of nHA on Bone Regeneration In Vivo
3.4. Improvement in the Osteogenic Properties of nHA when Conjugated with Drugs or Other Bioactive Molecules
3.4.1. Proteins
3.4.2. Antibiotics
3.4.3. Other Drugs or Bioactive Molecules
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadat-Shojai, M.; Khorasani, M.-T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef] [PubMed]
- Bal, Z.; Korkusuz, F.; Ishiguro, H.; Okada, R.; Kushioka, J.; Chijimatsu, R.; Kodama, J.; Tateiwa, D.; Ukon, Y.; Nakagawa, S.; et al. A novel nano-hydroxyapatite/synthetic polymer/bone morphogenetic protein-2 composite for efficient bone regeneration. Spine J. 2021, 21, 865–873. [Google Scholar] [CrossRef]
- Sinitsyna, O.; Veresov, A.G.; Kovaleva, E.; Kolen’ko, Y.V.; Putlyaev, V.; Tretyakov, Y. Synthesis of hydroxyapatite by hydrolysis of α-Ca3(PO4)2. Russ. Chem. Bull. 2005, 54, 79–86. [Google Scholar] [CrossRef]
- Fathi, M.H.; Hanifi, A.; Mortazavi, V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 2008, 202, 536–542. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Nasri, C.S.S.M.; Bin Arshad, S.E. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM). PLoS ONE 2021, 16, e0251009. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Wang, M.; Cheung, W.L.; Guo, B.C.; Jia, D.M. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 2008, 19, 103–110. [Google Scholar] [CrossRef]
- Barandehfard, F.; Keyanpour-Rad, M.; Hosseinnia, A.; Kazemzadeh, S.M.; Vaezi, M.; Hassanjani-Roshan, A. Sonochemical synthesis of hydroxyapatite and fluoroapatite nanosized bioceramics. J. Ceram. Process. Res. 2012, 13, 437–440. [Google Scholar]
- Canillas, M.; Pena, P.; de Aza, A.H.; Rodríguez, M.A. Calcium phosphates for biomedical applications. Boletín De La Soc. Española De Cerámica Y Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Raucci, M.G.; Demitri, C.; Soriente, A.; Fasolino, I.; Sannino, A.; Ambrosio, L. Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J. Biomed. Mater. Res. A 2018, 106, 2007–2019. [Google Scholar] [CrossRef]
- Zhang, J.C.; Lu, H.Y.; Lv, G.Y.; Mo, A.C.; Yan, Y.G.; Huang, C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: An experimental study in rabbit mandibles. Int. J. Oral Maxillofac. Surg. 2010, 39, 469–477. [Google Scholar] [CrossRef]
- Chakraborty, R.; Seesala, V.; Sen, M.; Sengupta, S.; Dhara, S.; Saha, P.; Das, S. MWCNT reinforced bone like calcium phosphate-hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surf. Coat. Technol. 2017, 325, 496–514. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Asri, R.I.M.; Sulong, A.B.; Ghani, S.A.C.; Ghazalli, Z. Hydroxyapatite-based coating on biomedical implant. In Hydroxyapatite: Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets; IntechOpen: Rijeka, Croatia, 2018; pp. 69–88. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Dorozhkin, S.V.; Pal, U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1504. [Google Scholar] [CrossRef]
- Chu, W.; Huang, Y.; Yang, C.; Liao, Y.; Zhang, X.; Yan, M.; Cui, S.; Zhao, C. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int. J. Pharm. 2017, 516, 352–363. [Google Scholar] [CrossRef]
- Fan, J.; Bi, L.; Wu, T.; Cao, L.; Wang, D.; Nan, K.; Chen, J.; Jin, D.; Jiang, S.; Pei, G. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin. J. Mater. Sci. Mater. Med. 2012, 23, 399–407. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781. [Google Scholar] [CrossRef]
- Ain, Q.; Zeeshan, M.; Khan, S.; Ali, H. Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. J. Biomed. Mater. Res. A 2019, 107, 2595–2600. [Google Scholar] [CrossRef]
- Ghiasi, B.; Sefidbakht, Y.; Rezaei, M. Hydroxyapatite for biomedicine and drug delivery. In Nanomaterials for Advanced Biological Applications; Springer: Cham, The Netherlands, 2019; pp. 85–120. [Google Scholar]
- Curtin, C.M.; Tierney, E.G.; McSorley, K.; Cryan, S.A.; Duffy, G.P.; O’Brien, F.J. Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv. Healthc. Mater. 2015, 4, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Tang, Q.; Yan, D.; Zheng, G.; Gu, M.; Luo, Z.; Mao, C.; Qian, Z.; Ni, W.; Shen, L. A multi-functionalized calcitriol sustainable delivery system for promoting osteoporotic bone regeneration both in vitro and in vivo. Appl. Mater. Today 2021, 22, 100906. [Google Scholar] [CrossRef]
- Jia, S.; Liu, Y.; Ma, Z.; Liu, C.; Chai, J.; Li, Z.; Song, W.; Hu, K. A novel vertical aligned mesoporous silica coated nanohydroxyapatite particle as efficient dexamethasone carrier for potential application in osteogenesis. Biomed. Mater. 2021, 16, 035030. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Gwak, S.J.; Kim, B.S. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J. Biomed. Mater. Res. A 2008, 87, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.G.; Biswas, R.; Menon, D.; Nair, M.B. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater. Sci. 2020, 8, 2653–2665. [Google Scholar] [CrossRef] [PubMed]
- Raina, D.B.; Glencross, A.; Chaher, N.; Liu, Y.; Lidgren, L.; Isaksson, H.; Tägil, M. Synthesis and characterization of a biocomposite bone bandage for controlled delivery of bone-active drugs in fracture nonunions. ACS Biomater. Sci. Eng. 2020, 6, 2867–2878. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; She, Z.; Wang, M.; Yu, X.; Jin, H.; Feng, Q. Repair of rat calvarial bone defects by controlled release of rhBMP-2 from an injectable bone regeneration composite. J. Tissue Eng. Regen. Med. 2012, 6, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli-Darestani, R.; Manafi-Rasi, A.; Kamrani-Rad, A. Dexamethasone-loaded hydroxyapatite enhances bone regeneration in rat calvarial defects. Mol. Biol. Rep. 2014, 41, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Teotia, A.K.; Raina, D.B.; Singh, C.; Sinha, N.; Isaksson, H.; Tägil, M.; Lidgren, L.; Kumar, A. Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration. ACS Appl. Mater. Interfaces 2017, 9, 6816–6828. [Google Scholar] [CrossRef]
- Jiang, J.-L.; Li, Y.-F.; Fang, T.-L.; Zhou, J.; Li, X.-L.; Wang, Y.-C.; Dong, J. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm. Res. 2012, 61, 207–215. [Google Scholar] [CrossRef]
- Lei, Z.; Weidong, M.; Shuangfeng, C.; Dawei, Y.; Fei, X.; Yaping, W. The enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide coated mineralized collagen composite in the treatment of the mandibular defects. Bio-Med. Mater. Eng. 2016, 27, 495–505. [Google Scholar] [CrossRef]
- Luo, S.; Wu, J.; Jia, Z.; Tang, P.; Sheng, J.; Xie, C.; Liu, C.; Gan, D.; Hu, D.; Zheng, W.; et al. An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration. Macromol. Biosci. 2019, 19, 1900047. [Google Scholar] [CrossRef]
- Su, J.; Xu, H.; Sun, J.; Gong, X.; Zhao, H. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int. J. Mol. Sci. 2013, 14, 12714–12728. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S.; Kikuchi, M.; Koyama, Y.; Matumoto, H.N.; Takakuda, K.; Shinomiya, K.; Tanaka, J. Development of a novel biomaterial, hydroxyapatite/collagen (HAp/Col) composite for medical use. Biomed. Mater. Eng. 2005, 15, 29–41. [Google Scholar] [PubMed]
- Cheng, T.L.; Murphy, C.M.; Ravarian, R.; Dehghani, F.; Little, D.G.; Schindeler, A. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering. J. Tissue Eng. 2015, 6, 2041731415609448. [Google Scholar] [CrossRef] [PubMed]
- Lebre, F.; Sridharan, R.; Sawkins, M.J.; Kelly, D.J.; O’Brien, F.J.; Lavelle, E.C. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci. Rep. 2017, 7, 2922. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Wu, J.; Xia, Y.; Yuan, Y.; Zhang, H.; Xu, S.; Lin, K. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. Int. J. Nanomed. 2018, 13, 4083–4092. [Google Scholar] [CrossRef] [Green Version]
- Wancket, L.M. Animal models for evaluation of bone implants and devices: Comparative bone structure and common model uses. Vet. Pathol. 2015, 52, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Dhivya, S.; Saravanan, S.; Sastry, T.P.; Selvamurugan, N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J. Nanobiotechnol. 2015, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, S.; Wu, X.; Liang, S.; Mu, Z.; Wei, J.; Deng, F.; Deng, Y.; Wei, S. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 2014, 35, 6758–6775. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Gao, M.; Syed, S.; Zhuang, J.; Xu, X.; Zhang, X.-Q. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018, 3, 401–417. [Google Scholar] [CrossRef]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Heubel, B.; Nohe, A. The role of BMP signaling in osteoclast regulation. J. Dev. Biol. 2021, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.W.H.; Ulery, B.D.; Ashe, K.M.; Laurencin, C.T. Studies of bone morphogenetic protein-based surgical repair. Adv. Drug Deliv. Rev. 2012, 64, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Young Jae, M.; Seongyup, J.; Kwang-Bok, L. BMP-2 promotes bone formation in bone defects in which bone remodeling is suppressed by long-term and high-dose zoledronic acid. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Zhou, M.; Geng, Y.-M.; Li, S.-Y.; Yang, X.-B.; Che, Y.-J.; Pathak, J.L.; Wu, G. Nanocrystalline Hydroxyapatite-Based Scaffold Adsorbs and Gives Sustained Release of Osteoinductive Growth Factor and Facilitates Bone Regeneration in Mice Ectopic Model. J. Nanomater. 2019, 2019, 1202159. [Google Scholar] [CrossRef] [Green Version]
- Kempen, D.H.R.; Lu, L.; Heijink, A.; Hefferan, T.E.; Creemers, L.B.; Maran, A.; Yaszemski, M.J.; Dhert, W.J.A. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 2009, 30, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Sharmin, F.; McDermott, C.; Lieberman, J.; Sanjay, A.; Khan, Y. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling. J. Orthop. Res. 2017, 35, 1086–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Wang, H.; Qiu, G.; Su, X.; Wu, Z. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions. BioMed Res. Int. 2016, 2016, 2869572. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Wang, D.; Zeng, R.; Wang, J. Synergistic effects of fibroblast growth factor-2 and bone morphogenetic protein-2 on bone induction. Mol. Med. Rep. 2017, 16, 4483–4492. [Google Scholar] [CrossRef]
- Reid, I.R.; Green, J.R.; Lyles, K.W.; Reid, D.M.; Trechsel, U.; Hosking, D.J.; Black, D.M.; Cummings, S.R.; Russell, R.G.G.; Eriksen, E.F. Zoledronate. Bone 2020, 137, 115390. [Google Scholar] [CrossRef]
- Hauser, M.; Siegrist, M.; Denzer, A.; Saulacic, N.; Grosjean, J.; Bohner, M.; Hofstetter, W. Bisphosphonates reduce biomaterial turnover in healing of critical-size rat femoral defects. J. Orthop. Surg. 2018, 26, 2309499018802487. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, S.; Vallet, S.; Mukherjee, S.; Cirstea, D.; Vaghela, N.; Santo, L.; Rosen, E.; Ikeda, H.; Okawa, Y.; Kiziltepe, T.; et al. High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin. Cancer Res. 2009, 15, 5829–5839. [Google Scholar] [CrossRef] [Green Version]
- Jing, D.; Hao, X.; Xu, F.; Liu, J.; Xu, F.; Luo, E.; Meng, G. Effects of local delivery of BMP2, zoledronate and their combination on bone microarchitecture, biomechanics and bone turnover in osteoporotic rabbits. Sci. Rep. 2016, 6, 28537. [Google Scholar] [CrossRef] [PubMed]
- Birt, M.C.; Anderson, D.W.; Bruce Toby, E.; Wang, J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J. Orthop. 2017, 14, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chu, X.; Cai, Y.; Tong, P.; Yao, J. Preparation and characterization of antimicrobial nano-hydroxyapatite composites. Mater. Sci. Eng. C 2014, 37, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; Mak, J.C.; O’Connell, D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014, 2014, CD000227. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.-X.; Yu, M.; Jiang, Y.; Xia, W. Management of osteoporosis with calcitriol in elderly Chinese patients: A systematic review. Clin. Interv. Aging 2014, 9, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cui, J.; Feng, W.; Lv, S.; Du, J.; Sun, J.; Han, X.; Wang, Z.; Lu, X.; Li, M.; et al. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats. Mater. Sci. Eng. C 2015, 49, 14–24. [Google Scholar] [CrossRef]
- Amjadian, S.; Seyedjafari, E.; Zeynali, B.; Shabani, I. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Int. J. Pharm. 2016, 507, 1–11. [Google Scholar] [CrossRef]
- Dhatchayani, S.; Vijayakumar, S.; Sarala, N.; Vaseeharan, B.; Sankaranarayanan, K. Effect of curcumin sorbed selenite substituted hydroxyapatite on osteosarcoma cells: An in vitro study. J. Drug Deliv. Sci. Technol. 2020, 60, 101963. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, H.; Lu, Y.; Zhao, F.; Liu, C.; Wang, Q.; Zheng, C.; Lu, R.; Song, K. Strontium/chitosan/hydroxyapatite/norcantharidin composite that inhibits osteosarcoma and promotes osteogenesis in vitro. BioMed Res. Int. 2020, 2020, 9825073. [Google Scholar] [CrossRef]
Author (Year) | Animal Model | Bone Defect/Disease | Total No. of Animals | Post-Operative Observation Period |
---|---|---|---|---|
Curtin et al. (2015) [20] | Wistar rats | A 7 mm circular transosseous defect on the cranium | 40 | 4 weeks |
Hu et al. (2021) [21] | SD rats | A defect with 3 mm diameter on the femoral condyle of OVX rats | 36 | 12 weeks |
Itoh et al. (2005) [33] | Beagle dogs | A defect of size 20 mm on the central part of the tibia | 8 | 12 and 24 weeks |
Jia et al. (2021) [22] | SD rats | A defect of size approximately 8 mm diameter on the calvarial bone | Not mentioned | 3 months |
Jiang et al. (2012) [29] | NZ rabbits | MRSA-induced chronic osteomyelitis on the tibia | 45 | 1, 2, 3, 6, and 12 weeks |
Kim et al. (2008) [23] | SD rats | A critical size defect of 8 mm diameter on the parietal bone | 24 | 8 weeks |
Krishnan et al. (2020) [24] | Wistar rats | MRSA-induced osteomyelitis on the right femur | 56 | 1 and 3 months |
Zhang et al. (2016) [30] | NZ rabbits | A non-penetrating bone defect with a size of 10 × 5 × 5 mm3 on the mandibular bone | 20 | 2 and 4 weeks |
Luo et al. (2019) [31] | NZ rabbits | A defect on the femur | 16 | 12 weeks |
Raina et al. (2020) [25] | SD rats | An open fracture on the right femur | 48 | 6 weeks |
Su et al. (2013) [32] | NZ rabbits | A large-size defect of 26 × 5 × 3 mm3 on the mandible | 36 | 4 and 12 weeks |
Tan et al. (2012) [26] | SD rats | A critical-size defect of 8 mm diameter on the calvarial bone | 18 | 4 and 8 weeks |
Tavakoli-Darestani et al. (2014) [27] | SD rats | A critical-size defect of 8 mm diameter on the calvarial bone | 15 | 8 weeks |
Teotia et al. (2017) [28] | Wistar rats | A critical-size defect of 8.5 mm diameter on the calvarial bone | 20 | 8 and 12 weeks |
Author (Year) | Micro-CT/X-ray/Mammography/MSCT (e.g., BV, TV, % BV/TV, Callus Formation, Bone Union) | Histology/Histomorphometry/Immunohistochemistry (e.g., Bone/Fibrous Tissue/Blood Vessel Formation, TbTh, TbSp, %Area of New Bone) | Mechanical Analysis (e.g., Mechanical Union/Non-Union, Peak Force, Extrinsic Stiffness | Other Specific Parameters |
---|---|---|---|---|
Curtin et al. (2015) [20] | + | + | - | - |
Hu et al. (2021) [21] | + | + | - | - |
Itoh et al. (2005) [33] | + | + | - | - |
Jia et al. (2021) [22] | + | + | - | - |
Jiang et al. (2012) [29] | + | + | - | - |
Kim et al. (2008) [23] | + | + | - | + (Calcium assay) |
Krishnan et al. (2020) [24] | + | + | - | - |
Zhang et al. (2016) [30] | + | + | - | - |
Luo et al., (2019) [31] | + | + | - | - |
Raina et al. (2020) [25] | + | + | + | - |
Su et al. (2013) [32] | + | + | - | - |
Tan et al. (2012) [26] | + | + | - | - |
Tavakoli-Darestani et al. (2014) [27] | + | + | - | - |
Teotia et al. (2017) [28] | + | + | - | + (ssNMR and Raman analysis) |
Author (Year) | Interventions | Dosage | Delivery Approach | Significant Findings |
---|---|---|---|---|
Curtin et al. (2015) [20] |
| * not specified in article | Implantable scaffold | nHA and combined PEI + nHA scaffolds containing both pBMP-2 and pVEGF showed higher new bone and vessels formation compared to the untreated defect |
Itoh et al. (2005) [33] |
|
| Implantable bone graft | Complete bone union was observed in both rhBMP-2 and non-rhBMP group, while the group with untreated defect does not show bone bridging throughout the study |
Kim et al. (2008) [23] |
|
| Implantable gel | An improved bone formation was observed in rats implanted with fibrin gels containing BMP-2 and PLGA/HA compared to the rats implanted with fibrin gel alone |
Zhang et al. (2016) [30] |
|
| Implantable scaffold | Rabbits implanted with scaffold with or without P17-BMP-2 showed presence of new bone formation compared to blank control, which showed only small amount of callus formation |
Raina et al. (2020) [25] |
|
| Implantable bone bandage | The volumes of callus in all GM-treated groups were higher compared to the blank control, especially in the presence of rhBMP-2 and ZA |
Su et al. (2013) [32] |
|
| Implantable scaffold | All rats implanted with scaffold showed areas of new bone formation compared to the untreated rats, where none of the rats survived |
Tan et al. (2012) [26] |
|
| Injectable hydrogel system | Defects implanted with IBRC with or without rhBMP-2 showed new bone formation compared to the blank control, which did not show any bone repair |
Teotia et al. (2017) [28] |
|
| Implantable nano-cement | Defects implanted with NCs with or without ZA and rhBMP-2 showed new bone formation compared to the blank control, which did not show any new bone formation |
Author (Year) | Interventions | Dosage | Delivery Approach | Significant Findings |
Jiang et al. (2012) [29] |
|
| Implantable pellets | Treatment group showed significant large areas of newly formed bone with no recurrent infection, while control group showed pus and new abscesses after 12 weeks |
Krishnan et al. (2020) [24] |
|
| Implantable scaffold | Scaffolds containing vancomycin (SE-V and SA-V) demonstrated good bactericidal and osteogenic properties compared to Stimulan + vancomycin, which only showed excellent bactericidal property without any new bone bridging |
Author (Year) | Interventions | Dosage | Delivery Approach | Significant Findings |
Hu et al. (2021) [21] |
|
| Implantable hydrogel system | Hydrogel systems containing HA showed significantly higher new bone formation compared to blank control, especially in the presence of HA-D, M, and Cal |
Jia et al. (2021) [22] |
|
| Implantable scaffold | Defects implanted with nHA scaffolds have higher new bone formation compared to blank control, which barely showed any bone regeneration |
Luo et al. (2019) [31] |
|
| Implantable hydrogel system | The defect implanted with OSA–CS–PHA hydrogel showed large areas of new bone formation compared to the blank control and OSA–CS–Borax hydrogel implant |
Tavakoli-Darestani et al. (2014) [27] |
|
| Implantable bioceramic | Defects implanted with HA bioceramics (with and without Dex) showed bone regeneration compared to blank control, which did not show any bone regeneration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zaffarin, A.S.; Ng, S.-F.; Ng, M.H.; Hassan, H.; Alias, E. Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. Nanomaterials 2021, 11, 2569. https://doi.org/10.3390/nano11102569
Mohd Zaffarin AS, Ng S-F, Ng MH, Hassan H, Alias E. Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. Nanomaterials. 2021; 11(10):2569. https://doi.org/10.3390/nano11102569
Chicago/Turabian StyleMohd Zaffarin, Anis Syauqina, Shiow-Fern Ng, Min Hwei Ng, Haniza Hassan, and Ekram Alias. 2021. "Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review" Nanomaterials 11, no. 10: 2569. https://doi.org/10.3390/nano11102569
APA StyleMohd Zaffarin, A. S., Ng, S. -F., Ng, M. H., Hassan, H., & Alias, E. (2021). Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. Nanomaterials, 11(10), 2569. https://doi.org/10.3390/nano11102569