The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers
Abstract
:1. Introduction
2. Theranostic Nanomaterials
3. Targeting Strategies
Membrane Receptors | Ligands | Cancer | Ref. |
---|---|---|---|
Hormone Receptor-Positive (80%): Estrogen receptor positive (ER+) or progesterone receptor positive (PR+) | 21-[18F]fluorofuranylnorprogesterone (FFNP) | Breast cancer | Dehdashti et al. [84] |
Human epidermal growth factor receptor-2 (HER2) (20%) | Herceptin antibody | ||
Gastrin-releasing peptide (GRP) (65–75% and > 90%) | Series of Bombesin (BBN) peptide conjugates | Breast, prostate, and lung cancer | Kübler and Albrecht [85], Baratto et al. [86], Tangthong et al. [87] |
Somatostatin (sst2) > 90% (antagonist†) | Octreotide, fc[CFwKTC]T(ol) RC-121 (D- Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) | Breast, prostate, and lung cancer | Chatzisideri et al. [88], Mukherjee et al. [89] |
Triple-Negative (10–20%)—BRCA1 and folate receptors | Folate | Breast, prostate, and lung cancer | Marko et al. [90], Thakur and Kutty [91] |
Prostate-specific membrane antigen (PSMA) and androgen receptor | PSMA peptide Monoclonal antibody RM2 | Prostate cancer | Baratto et al. [86], Cifuentes-Rius et al. [92] |
Epidermal growth factor receptors (EGFRs) | EGF, EGF-like ligands, TGF-α, and HRGs | Breast and prostate cancer | Maennling et al. [93] |
Lectin-binding glycoproteins (e.g., P-glycoprotein) | Lectin | Breast cancer | Zhuo et al. [94] |
Prostate stem cell antigen (PSCA) | PSCA-specific chimeric antigen receptor (CAR)-engineered T cells | Prostate cancer | Lee et al. [80] |
Integrin αvβ3 | Various types of arginine-glycine-aspartic acid (RGD) such as c(RGDyK), c(RGDfK) and (c(RGDf[N-Me]V to target tumor-associated endothelial cells | Breast and prostate cancer | Chatzisideri et al. [88], Li et al. [95] |
Transferrin receptor and urokinase-type plasminogen activator receptor (uPAR) | Vitronectin | Lung cancer | Montuori et al. [96] |
4. Mechanisms of Diagnosis for Breast, Lung and Prostate Cancer
5. Mechanisms of Treatment for Breast, Lung and Prostate Cancer
6. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zendehdel, M.; Niakan, B.; Keshtkar, A.; Rafiei, E.; Salamat, F. Subtypes of Benign Breast Disease as a Risk Factor for Breast Cancer: A Systematic Review and Meta-Analysis Protocol. Iran. J. Med. Sci. 2018, 43, 1–8. [Google Scholar] [PubMed]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019, 11, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Medavenkata, S.P.; Akshatha, H.S. Nano Theranostics—A Breakthrough in Cancer Diagnosis and Treatment and Regulations of Nano Technology Products. Int. J. Pharm. Sci. Res. 2018, 9, 3136–3149. [Google Scholar] [CrossRef]
- ISO. Nanotechnologies—Plain Language Explanation of Selected Terms from the ISO/IEC 80004 Series. ISO/TR 18401:2017(en). 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:18401:ed-1:v1:en (accessed on 3 September 2021).
- Wagner, S.; Gondikas, A.; Neubauer, E.; Hofmann, T.; von der Kammer, F. Spot the Difference: Engineered and Natural Nanoparticles in the Environment-Release, Behavior, and Fate. Angew. Chemie Int. Ed. 2014, 53, 12398–12419. [Google Scholar] [CrossRef]
- Madamsetty, V.S.; Mukherjee, A.; Mukherjee, S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front. Pharmacol. 2019, 10, 1264. [Google Scholar] [CrossRef]
- Siafaka, P.I.; Okur, N.Ü.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci. 2021, 16, 24–46. [Google Scholar] [CrossRef]
- Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M.T.; Sajid, A.; Mathew, B.; Uddin, M.S.; Aleya, L.; Abdel-Daim, M.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ. Sci. Pollut. Res. 2020, 27, 19151–19168. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Popescu, R.C.; Fufă, M.O.M.; Andronescu, E.; Grumezescu, A.M. Specifically targeted imaging using functionalized nanoparticles. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–44. ISBN 9780323417389. [Google Scholar]
- Zayed, D.G.; Abdelhamid, A.S.; Freag, M.S.; Elzoghby, A.O. Hybrid quantum dot-based theranostic nanomedicines for tumor-Targeted drug delivery and cancer imaging. Nanomedicine 2019, 14, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.Z.; Zhu, T. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications. Nanoscale Res. Lett. 2015, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168. [Google Scholar] [CrossRef]
- Kalinowska, D.; Grabowska-Jadach, I.; Drozd, M.; Pietrzak, M. Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications. Appl. Nanosci. 2018, 8, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Chen, Z.; Gao, S.; Goh, B.L.; Bin Samsudin, I.; Lwe, K.W.; Wu, Y.; Wu, C.; Su, X. Recent advances in non-toxic quantum dots and their biomedical applications. Prog. Nat. Sci. Mater. Int. 2019, 29, 628–640. [Google Scholar] [CrossRef]
- Ahar, M.J. A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic. J. Nanomed. Res. 2017, 5, 00117. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.X.; Zeng, E.Z. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res. Lett. 2015, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 105–127. [Google Scholar] [CrossRef]
- Luk, B.T.; Zhang, L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 2014, 6, 21859–21873. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef]
- Emami, F.; Mostafavi Yazdi, S.J.; Na, D.H. Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J. Pharm. Investig. 2019, 49, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Ogay, V.; Mun, E.A.; Kudaibergen, G.; Baidarbekov, M.; Kassymbek, K.; Zharkinbekov, Z.; Saparov, A. Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration. Polymers 2020, 12, 2881. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 1–40. [Google Scholar] [CrossRef]
- Hanafy, N.A.N.; El-Kemary, M.; Leporatti, S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018, 10, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanase, L.I.; Riess, G. Self-assembly of block and graft copolymers in organic solvents: An overview of recent advances. Polymers 2018, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 2013, 453, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Munavalli, B.B.; Naik, S.R.; Torvi, A.I.; Kariduraganavar, M.Y. Kariduraganavar, “Dendrimers”; Springer: Cham, Switzerland, 2019; pp. 289–345. [Google Scholar]
- Sandoval-Yañez, C.; Rodriguez, C.C. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials 2020, 13, 570. [Google Scholar] [CrossRef] [Green Version]
- Najafi, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. A review on synthesis and applications of dendrimers. J. Iran. Chem. Soc. 2021, 18, 503–517. [Google Scholar] [CrossRef]
- Mandal, A.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 287–297. [Google Scholar] [CrossRef]
- Yan, X.; Yang, Y.; Sun, Y. Dendrimer Applications for Cancer Therapies. J. Phys. Conf. Ser. 2021, 1948, 012205. [Google Scholar] [CrossRef]
- Li, W.; Cao, Z.; Liu, R.; Liu, L.; Li, H.; Li, X.; Chen, Y.; Lu, C.; Liu, Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4222–4233. [Google Scholar] [CrossRef] [Green Version]
- Tepale, N.; Fernández-Escamilla, V.V.A.; Carreon-Alvarez, C.; González-Coronel, V.J.; Luna-Flores, A.; Carreon-Alvarez, A.; Aguilar, J. Nanoengineering of gold nanoparticles: Green synthesis, characterization, and applications. Crystals 2019, 9, 612. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent advances of plasmonic nanoparticles and their applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.Y. Plasmon-enhanced light–matter interactions and applications. NPJ Comput. Mater. 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci. 2020, 21, 2480. [Google Scholar] [CrossRef] [Green Version]
- Ashikbayeva, Z.; Tosi, D.; Balmassov, D.; Schena, E.; Saccomandi, P.; Inglezakis, V. Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials 2019, 9, 1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Jiang, S.; Wang, J.; Li, X.; Wu, T.; Xu, P.; Santos-Oliveira, R.; Zhang, A. Radioactive Gold Nanoparticle in Two Forms (19879Au GNPs and 99mTc-GNPs) for Lung Cancer Antiproliferative Induction and Intralesional Imaging: A Proof of Concept. Anticancer Agents Med. Chem. 2020, 20, 1648–1653. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Mukherjee, S.; Liang, L.; Veiseh, O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.; Sousa, J.; Pais, A.; Vitorino, C. The role of magnetic nanoparticles in cancer nanotheranostics. Materials 2020, 13, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-J.; Huang, C.-H.; Wang, C.-H.; Shieh, M.-J.; Chen, K.-C. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int. J. Nanomed. 2020, 15, 10331–10347. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Ma, K.; Kim, T.H.; Lee, E.S.; Oh, K.T.; Park, E.S.; Lee, K.C.; Youn, Y.S. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 2012, 33, 1536–1546. [Google Scholar] [CrossRef]
- Blanco, E.; Sangai, T.; Hsiao, A.; Ferrati, S.; Bai, L.; Liu, X.; Meric-Bernstam, F.; Ferrari, M. Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett. 2013, 334, 245–252. [Google Scholar] [CrossRef]
- Peixoto, R.C.A.; Miranda-Vilela, A.L.; de Souza Filho, J.; Carneiro, M.L.B.; Oliveira, R.G.S.; da Silva, M.O.; de Souza, A.R.; Báo, S.N. Antitumor effect of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles on mice bearing breast cancer: A systemic toxicity assay. Tumor Biol. 2015, 36, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A.; et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ahamed, M.; Khan, M.A.M.; Akhtar, M.J.; Alhadlaq, H.A.; Alshamsan, A. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Sci. Rep. 2016, 6, 30196. [Google Scholar] [CrossRef] [Green Version]
- Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; et al. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep. 2019, 9, 11134. [Google Scholar] [CrossRef] [Green Version]
- Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res. 2019, 18, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother. 2019, 116, 109006. [Google Scholar] [CrossRef] [PubMed]
- Gnanasekar, S.; Balakrishnan, D.; Seetharaman, P.; Arivalagan, P.; Chandrasekaran, R.; Sivaperumal, S. Chrysin-Anchored Silver and Gold Nanoparticle-Reduced Graphene Oxide Composites for Breast Cancer Therapy. ACS Appl. Nano Mater. 2020, 3, 4574–4585. [Google Scholar] [CrossRef]
- Cristofolini, T.; Dalmina, M.; Sierra, J.A.; Silva, A.H.; Pasa, A.A.; Pittella, F.; Creczynski-Pasa, T.B. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Mater. Sci. Eng. C 2020, 109, 110555. [Google Scholar] [CrossRef] [PubMed]
- Mohan Yallapu, M.; Ray Dobberpuhl, M.; Michele Maher, D.; Jaggi, M.; Chand Chauhan, S. Design of Curcumin loaded Cellulose Nanoparticles for Prostate Cancer. Curr. Drug Metab. 2011, 13, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, Y.; Yu, H.; Wu, D.; Ma, H.; Li, H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal. Biochem. 2013, 434, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.Y.; Hsiao, J.K.; Wang, Y.P.; Lan, C.H.; Wu, H.C. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 2016, 99, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mangadlao, J.D.; Wang, X.; McCleese, C.; Escamilla, M.; Ramamurthy, G.; Wang, Z.; Govande, M.; Basilion, J.P.; Burda, C. Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer. ACS Nano 2018, 12, 3714–3725. [Google Scholar] [CrossRef]
- Gu, F.; Hu, C.; Xia, Q.; Gong, C.; Gao, S.; Chen, Z. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Nanopart. Res. 2018, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Xu, Y.; Tao, W.; Ubellacker, J.M.; Lim, M.; Aum, D.; Lee, G.Y.; Zhou, K.; Zope, H.; Yu, M.; et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2018, 2, 850–864. [Google Scholar] [CrossRef]
- Luo, D.; Wang, X.; Zeng, S.; Ramamurthy, G.; Burda, C.; Basilion, J.P. Targeted Gold Nanocluster-Enhanced Radiotherapy of Prostate Cancer. Small 2019, 15, 1–8. [Google Scholar] [CrossRef]
- Tunki, L.; Jangid, A.K.; Pooja, D.; Bhargava, S.K.; Sistla, R.; Kulhari, H. Serotonin-Functionalized Vit-E Nanomicelles for Targeting of Irinotecan to Prostate Cancer Cells. ACS Appl. Bio Mater. 2020, 3, 5093–5102. [Google Scholar] [CrossRef]
- Emanet Ciofani, M.; Şen, Ö.; Çulha, M. Hexagonal Boron Nitride Nanoparticles for Prostate Cancer Treatment. ACS Appl. Nano Mater. 2020, 3, 2364–2372. [Google Scholar] [CrossRef]
- Kim, S.Y.; Naskar, D.; Kundu, S.C.; Bishop, D.P.; Doble, P.A.; Boddy, A.V.; Chan, H.K.; Wall, I.B.; Chrzanowski, W. Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer. Sci. Rep. 2015, 5, 11878. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Byeon, H.J.; Choi, J.S.; Thao, L.; Kim, I.; Lee, E.S.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release 2015, 197, 199–207. [Google Scholar] [CrossRef]
- Wu, D.; Wang, C.; Yang, J.; Wang, H.; Han, H.; Zhang, A.; Yang, Y.; Li, Q. Improving the Intracellular Drug Concentration in Lung Cancer Treatment through the Codelivery of Doxorubicin and miR-519c Mediated by Porous PLGA Microparticle. Mol. Pharm. 2016, 13, 3925–3933. [Google Scholar] [CrossRef]
- Ramalingam, V.; Varunkumar, K.; Ravikumar, V.; Rajaram, R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci. Rep. 2018, 8, 3815. [Google Scholar] [CrossRef]
- Menon, J.U.; Kuriakose, A.; Iyer, R.; Hernandez, E.; Gandee, L.; Zhang, S.; Takahashi, M.; Zhang, Z.; Saha, D.; Nguyen, K.T. Dual-Drug Containing Core-Shell Nanoparticles for Lung Cancer Therapy. Sci. Rep. 2017, 7, 13249. [Google Scholar] [CrossRef] [Green Version]
- Amreddy, N.; Babu, A.; Panneerselvam, J.; Srivastava, A.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 373–384. [Google Scholar] [CrossRef]
- Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017, 91, 46–52. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Wang, D.; Feng, L.; Cui, K. Synthesis of hollow maghemite (<gamma>-Fe2O3) particles for magnetic field and pH-responsive drug delivery and lung cancer treatment. Ceram. Int. 2021, 47, 7457–7464. [Google Scholar] [CrossRef]
- Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart targeting to improve cancer therapeutics. Drug Des. Dev. Ther. 2019, 13, 3753–3772. [Google Scholar] [CrossRef] [Green Version]
- Fallis, A. Cancer Nanotechnology Plan 2015. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev. 2014, 79, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Saadat, M.; Zahednezhad, F.; Zakeri-Milani, P.; Heidari, H.R.; Shahbazi-Mojarrad, J.; Valizadeh, H. Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J. Pharm. Pharm. Sci. 2019, 22, 191–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kievit, F.M.; Zhang, M. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 2011, 23, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Bangayan, N.J.; Chai, T.; Smith, B.A.; Pariva, T.E.; Yun, S. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2018, 115, E4473–E4482. [Google Scholar] [CrossRef] [Green Version]
- Reda, A.; Hosseiny, S.; El-Sherbiny, I.M. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine 2019, 14, 2487–2514. [Google Scholar] [CrossRef] [PubMed]
- Mousavizadeh, A.; Jabbari, A.; Akrami, M.; Bardania, H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: A systematic review. Colloids Surf. B Biointerfaces 2017, 158, 507–517. [Google Scholar] [CrossRef]
- Loukanov, A.; Nikolova, S.; Filipov, C.; Nakabayashi, S. Nanomaterials for cancer medication: From individual nanoparticles toward nanomachines and nanorobots. Pharmacia 2019, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dehdashti, F.; Wu, N.; Ma, C.X.; Naughton, M.J.; Katzenellenbogen, J.A.; Siegel, B.A. Association of PET-based estradiol-challenge test for breast cancer progesterone receptors with response to endocrine therapy. Nat. Commun. 2021, 12, 733. [Google Scholar] [CrossRef]
- Kübler, E.; Albrecht, H. Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: Potential for active targeting with engineered anti-cancer nanomedicines. Oncotarget 2018, 9, 24882–24897. [Google Scholar] [CrossRef] [Green Version]
- Baratto, L.; Duan, H.; Helmut, M.; Iagaru, A. Imaging the Distribution of Gastrin-Releasing Peptide Receptors in Cancer. J. Nucl. Med. 2020, 61, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Tangthong, T.; Piroonpan, T.; Thipe, V.C.; Khoobchandani, M.; Katti, K.; Katti, K.V.; Pasanphan, W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol. Sci. Appl. 2021, 1, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Chatzisideri, T.; Leonidis, G.; Sarli, V. Cancer-targeted delivery systems based on peptides. Future Med. Chem. 2018, 10, 2201–2226. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Paul, M.; Mukherjee, S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers 2019, 11, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marko, A.J.; Borah, B.M.; Siters, K.E.; Missert, J.R.; Gupta, A.; Pera, P.; Isaac-Lam, M.F.; Pandey, R.K. Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules 2020, 10, 1651. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res. 2019, 38, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifuentes-Rius, A.; Butler, L.M.; Voelcker, N.H. Precision nanomedicines for prostate cancer. Nanomedicine 2018, 13, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Maennling, A.E.; Tur, M.K.; Niebert, M.; Klockenbring, T.; Zeppernick, F.; Gattenlöhner, S.; Meinhold-Heerlein, I.; Hussain, A.F. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers 2019, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.-M.; Cheng, L.; Guo, S.-J.; Wang, Y.; Czajkowsky, D.M.; Gao, H.; Hu, X.-F.; Tao, S.-C. Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer. Breast Cancer Res. 2015, 17, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, J.; Kong, H.; Zeng, Y.; Liu, G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Sci. Technol. Adv. Mater. 2018, 19, 771–790. [Google Scholar] [CrossRef] [Green Version]
- Montuori, N.; Pesapane, A.; Rossi, F.W.; Giudice, V.; De Paulis, A.; Selleri, C.; Ragno, P. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer. Transl. Med. UniSa 2016, 15, 15–21. [Google Scholar]
- Lee, H.; Shields, A.F.; Siegel, B.A.; Miller, K.D.; Krop, I.; Ma, C.X.; LoRusso, P.M.; Munster, P.N.; Campbell, K.; Gaddy, D.F.; et al. (64)Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clin. Cancer Res. 2017, 23, 4190–4202. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lin, H.; Zhao, M.; Dai, C.; Zhang, S.; Peng, W.; Chen, Y. 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics 2018, 8, 1648. [Google Scholar] [CrossRef]
- Fu, Z.; Xiang, J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef] [PubMed]
- Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019, 6, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Katti, K.V.; Khoobchandani, M.; Thipe, V.C.; Al-Yasiri, A.Y.; Katti, K.K.; Loyalka, S.K.; Sakr, T.M.; Lugão, A.B. Prostate tumor therapy advances in nuclear medicine: Green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J. Radioanal. Nucl. Chem. 2018, 318, 1737–1747. [Google Scholar] [CrossRef]
- Hosoya, H.; Dobroff, A.S.; Driessen, W.H.P.; Cristini, V.; Brinker, L.M. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proc. Natl. Acad. Sci. USA 2016, 113, 1877–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamal-Eldeen, A.M.; Moustafa, D.; El-Daly, S.M.; Abo-Zeid, M.A.M.; Saleh, S.; Khoobchandani, M.; Katti, K.; Shukla, R.; Katti, K.V. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed. Pharmacother. 2017, 89, 1045–1054. [Google Scholar] [CrossRef]
- Li, Z.; Yin, Q.; Chen, B.; Wang, Z.; Yan, Y.; Qi, T.; Chen, W.; Zhang, Q.; Wang, Y. Ultra-pH-sensitive indocyanine green-conjugated nanoprobes for fluorescence imaging-guided photothermal cancer therapy. Nanomed. Nanotechnol. Biol. Med. 2019, 17, 287–296. [Google Scholar] [CrossRef]
- Zhao, C.; Song, X.; Jin, W.; Wu, F.; Zhang, Q. Analytica Chimica Acta Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4 @ carbon nanoparticles. Anal. Chim. Acta 2019, 1056, 108–116. [Google Scholar] [CrossRef]
- Tariq, H.; Bokhari, S.A.I. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol. 2020, 14, 537–547. [Google Scholar] [CrossRef]
- Gong, C.; Yu, X.; You, B.; Wu, Y.; Wang, R.; Han, L.; Wang, Y.; Gao, S.; Yuan, Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J. Nanobiotechnol. 2020, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Elgqvist, J. Nanoparticles as theranostic vehicles in experimental and clinical applications-focus on prostate and breast cancer. Int. J. Mol. Sci. 2017, 18, 1102. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Penet, M.-F.; Nimmagadda, S.; Li, C.; Banerjee, S.R.; Winnard, P.T.; Artemov, D.; Glunde, K.; Pomper, M.G.; Bhujwalla, Z.M. PSMA-Targeted Theranostic Nanoplex for Prostate Cancer Therapy. ACS Nano 2012, 6, 7752–7762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Sun, Y.; Chen, Y.; Liu, W.; Jiang, J.; Guan, W.; Zhang, Z.; Duan, Y. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles. Int. J. Mol. Sci. 2015, 16, 9573–9587. [Google Scholar] [CrossRef] [Green Version]
- Manigandan, A.; Handi, V.; Sundaramoorthy, N.S.; Dhandapani, R.; Radhakrishnan, J.; Sethuraman, S.; Subramanian, A. Responsive Nanomicellar Theranostic Cages for Metastatic Breast Cancer. Bioconjug. Chem. 2018, 29, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z.; Xue, X.; Huang, Z.; Zhang, S.; Zhang, G.; et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017, 127, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Dufort, S.; Bianchi, A.; Henry, M.; Lux, F.; Le Duc, G.; Josserand, V.; Louis, C.; Perriat, P.; Crémillieux, Y.; Tillement, O.; et al. Nebulized Gadolinium-Based Nanoparticles: A Theranostic Approach for Lung Tumor Imaging and Radiosensitization. Small 2015, 11, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, Y.; Liang, X. Theranostic Nanoparticles Engineered for Clinic and Pharmaceutics. Acc. Chem. Res. 2011, 44, 1114–1122. [Google Scholar] [CrossRef]
- Kyzyma, O.A.; Avdeev, M.V.; Bolshakova, O.I.; Melentev, P.; Sarantseva, S.V.; Ivankov, O.I.; Korobov, M.V.; Mikheev, I.V.; Tropin, T.V.; Kubovcikova, M.; et al. State of aggregation and toxicity of aqueous fullerene solutions. Appl. Surf. Sci. 2019, 483, 69–75. [Google Scholar] [CrossRef]
- Barabadi, H.; Vahidi, H.; Mahjoub, M.A.; Kosar, Z.; Damavandi Kamali, K.; Ponmurugan, K.; Hosseini, O.; Rashedi, M.; Saravanan, M. Emerging Antineoplastic Gold Nanomaterials for Cervical Cancer Therapeutics: A Systematic Review. J. Clust. Sci. 2020, 31, 1173–1184. [Google Scholar] [CrossRef]
- Butterworth, K.T.; Nicol, J.R.; Ghita, M.; Rosa, S.; Chaudhary, P.; McGarry, C.K.; McCarthy, H.O.; Jimenez-Sanchez, G.; Bazzi, R.; Roux, S.; et al. Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine 2016, 11, 2035–2047. [Google Scholar] [CrossRef] [Green Version]
- Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: An in vivo study. Int. J. Nanomed. 2011, 6, 2859. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Qu, Y.; Li, W.; Li, H.; Luo, F.; Qian, Z. Mesoporous Magnetic Gold “Nanoclusters” as Theranostic Carrier for Chemo-Photothermal Co-therapy of Breast Cancer. Theranostics 2014, 4, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revia, R.A.; Stephen, Z.R.; Zhang, M. Theranostic Nanoparticles for RNA-Based Cancer Treatment. Acc. Chem. Res. 2019, 52, 1496–1506. [Google Scholar] [CrossRef]
- Cano-Cortes, M.V.; Navarro-Marchal, S.A.; Ruiz-Blas, M.P.; Diaz-Mochon, J.J.; Marchal, J.A.; Sanchez-Martin, R.M. A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102120. [Google Scholar] [CrossRef]
- Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B 2019, 9, 410–420. [Google Scholar] [CrossRef]
- Flores, O.; Santra, S.; Kaittanis, C.; Bassiouni, R.; Khaled, A.S.; Khaled, A.R.; Grimm, J.; Perez, J.M. PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer. Theranostics 2017, 7, 2477–2494. [Google Scholar] [CrossRef]
- Karpuz, M.; Silindir-Gunay, M.; Kursunel, M.A.; Esendagli, G.; Dogan, A.; Ozer, A.Y. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2020, 57, 101707. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, G.; Li, Y.; Xu, W.; Gong, S. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 30297–30305. [Google Scholar] [CrossRef]
- Tade, R.S.; Patil, P.O. Theranostic Prospects of Graphene Quantum Dots in Breast Cancer. ACS Biomater. Sci. Eng. 2020, 6, 5987–6008. [Google Scholar] [CrossRef]
- Ko, N.R.; Nafiujjaman, M.; Lee, J.S.; Lim, H.-N.; Lee, Y.-k.; Kwon, I.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Adv. 2017, 7, 11420–11427. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-F.; Wu, H.-C.; Kuan, C.-H.; Lin, C.-J.; Wang, L.-W.; Chang, C.-W.; Wang, T.-W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016, 6, 21170. [Google Scholar] [CrossRef] [PubMed]
- Lütje, S.; Slavik, R.; Fendler, W.; Herrmann, K.; Eiber, M. PSMA ligands in prostate cancer—Probe optimization and theranostic applications. Methods 2017, 130, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Yari, H.; Nkepang, G.; Awasthi, V. Surface Modification of Liposomes by a Lipopolymer Targeting Prostate Specific Membrane Antigen for Theranostic Delivery in Prostate Cancer. Materials 2019, 12, 756. [Google Scholar] [CrossRef] [Green Version]
- Virgolini, I.; Decristoforo, C.; Haug, A.; Fanti, S.; Uprimny, C. Current status of theranostics in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 471–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jiang, L.; Zhang, Y.; Lu, Y.; Li, J.; Wang, H.; Yao, D.; Wang, D. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer. ACS Appl. Mater. Interfaces 2020, 12, 33564–33574. [Google Scholar] [CrossRef]
- Hussain, S. Nanomedicine for treatment of lung cancer. Adv. Exp. Med. Biol. 2016, 890, 137–147. [Google Scholar] [CrossRef]
- Mottaghitalab, F.; Farokhi, M.; Fatahi, Y.; Atyabi, F.; Dinarvand, R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J. Control. Release 2019, 295, 250–267. [Google Scholar] [CrossRef]
- Mohammadpour, Z.; Majidzadeh-A, K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater. Sci. Eng. 2020, 6, 1852–1873. [Google Scholar] [CrossRef]
- Gao, T.; Bi, A.; Yang, S.; Liu, Y.; Kong, X.; Zeng, W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. In Advances in Experimental Medicine and Biology; Schatten, H., Ed.; Springer: Cham, Switzerland, 2018; Volume 1126, p. E3. ISBN 9783319992860. [Google Scholar]
- Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef]
- Gorain, B.; Choudhury, H.; Nair, A.B.; Dubey, S.K.; Kesharwani, P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov. Today 2020, 25, 1174–1188. [Google Scholar] [CrossRef]
- Ahmad, G.; El Sadda, R.; Botchkina, G.; Ojima, I.; Egan, J.; Amiji, M. Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. Cancer Lett. 2018, 406, 71–80. [Google Scholar] [CrossRef]
- Scheetz, L.; Park, K.S.; Li, Q.; Lowenstein, P.R.; Maria, G.; Schwendeman, A.; Moon, J.J. Engineering Patient-Specific Cancer Immunotherapies. Nature Biom Eng. 2020, 3, 768–782. [Google Scholar] [CrossRef]
- Emens, L.A. Breast cancer immunotherapy: Facts and hopes. Clin. Cancer Res. 2018, 24, 511–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in non-small cell lung cancer: Facts and hopes. Clin. Cancer Res. 2019, 25, 4592–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, H.R.; Lee, J.H.; Ponnazhagan, S. Revisiting immunotherapy: A focus on prostate cancer. Cancer Res. 2020, 80, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.Y.; Yap, P.K.; Xin Lim, G.L.; Mehta, M.; Chan, Y.; Ng, S.W.; Kapoor, D.N.; Negi, P.; Anand, K.; Singh, S.K.; et al. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem. Biol. Interact. 2020, 329, 109221. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, J.; Liu, Y.; Saw, P.E.; Tao, W.; Yu, M.; Zope, H.; Si, M.; Victorious, A.; Rasmussen, J.; et al. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS Nano 2017, 11, 2618–2627. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging: Via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, M.; Bilewicz, A.; Kruszewski, M.; Wegierek-Ciuk, A.; Lankoff, A. Targeted radionuclide therapy of prostate cancer-from basic research to clinical perspectives. Molecules 2020, 25, 1743. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.J.; Chen, H.Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 2017, 12, 73–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.; Liu, Y.; Zhou, M.; Wang, W.; Shi, M.; Xing, M.; Liao, W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomed. 2018, 13, 1119–1137. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, C.; Wang, Y.; Liao, W.; Chen, Y.; Kuo, C.; Kuo, H.; Hung, C. Effects of Low-Level Laser Therapy on M1-Related Cytokine Expression in Monocytes via Histone Modification. Mediat. Inflamm. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
Synthesis Protocols | ||||||
---|---|---|---|---|---|---|
Nanopartilces | Type of Nano | Preparation Method | Applications | Type of CANCER | Source | Year |
Human Serum Albumin | Organic | Desolvation technique for preparation of TRAIL/transferrin/doxorubicin HSA nanoparticles (TRAIL/Tf/DoxHSA-NPs). | Drug delivery | HCT 116, MCF-7/ADR and CAPAN-1 cell lines | Bae, S. et al. [48] | 2012 |
Paclitaxel (PTX)-(PEG-PCL) polymer micelles | Organic | Discoidal porous silicon particles were fabricated by modification of protocols that combined electrochemical etching and photolithography. A solvent evaporation procedure was used to fabricate PTX micelles. | Chemotherapeutic; drug delivery | Breast cancer, MCF-7 and MDA-MB-468 | Blanco, E. et al. [49] | 2013 |
Maghemite NPs coated with rhodium (II) citrate | Metallic | Maghemite nanoparticles were synthesized by alkaline co-precipitation of Fe2+ and Fe3+ ions. Then Magh-Rh2Cit was prepared using 5 mL of the colloidal dispersion with 1 mL of Rh2Cit and stirred for 24 h. | Drug delivery | Bearing 4T1 breast carcinoma | Peixoto, R. et al. [50] | 2015 |
SPIONs (MF66) (MF66-N6LDOX) | Organic/Metallic | The magnetic nanoparticles were produced by means of the co-precipitation technique and coated with oleic acid and dispersed in toluene, and a solution of DMSA in dimethyl sulfoxide (DMSO) was added to perform a ligand exchange from oleic acid to DMSA. | Drug delivery | Breast adenocarcinoma (MDA-MB-231). | Kossatz, S. et al. [51] | 2015 |
Zn-doped TiO2 nanoparticles | Metallic | Titanium (IV) isopropoxide Ti [OCH (CH3)2]4 and zinc nitrate [Zn (NO3)2. 6 H2O] were prepared in ethanol and transformed into a gel prior to doping with Zn. | Cancer therapy | Breast cancer MCF-7 cells | Ahamed et al. [52] | 2016 |
Curcumin-loaded solid nanoparticles | Organic | Empty and curcumin-loaded solid lipid nanoparticles (SLNs) were prepared by using an ethanolic precipitation technique. | Cancer therapy | Breast cancer (MCF7 and MDA-MB-231) | Minafra, L. et al. [53] | 2019 |
Zinc Oxide | Metallic | I. Synthesis of amine-functionalized zinc oxide nanoparticles (ZnO NPs); II. Tagging of 3-carboxybenzeneboronic acid (PBA) to ZnO NPs; III. Loading of curcumin to ZnO-PBA NPs. | Drug delivery | Breast cancer | Kundu, M. et al. [54] | 2019 |
Arginine-glycine-aspartic (RGD) tripeptide modified | Organic | Arginine-glycine-aspartic (RGD) tripeptide modified is encapsulated in pH-sensitive solid lipid nanoparticles (SLNs). RGD-HZ-GMS was applied to encapsulate doxorubicin (DOX) to construct a RGD-modified, DOX-loaded SLNs (RGD-DOX-SLNs). | Drug delivery | Breast cancer (MCF-7 and MCF7/ADR) | Zheng, G. et al. [55] | 2019 |
Chrysin-Anchored Silver and Gold Nanoparticle-Reduced Graphene Oxide | Metallic/Non-metallic | Anticancer flavone chrysin (5,7-dihydroxyflavone ChR) was employed to fabricate silver (AgNPs), and gold nanoparticles (AuNPs) hybridized with reduced graphene oxide (rGO) nanocomposites (ChR@Ag-rGONCs and ChR@Au-rGONCs) | Cancer therapy | Breast cancer (MDA-MD-468 and MDA-MD-231) | Gnanasekar, S. et al. [56] | 2020 |
SPIONs | Metallic | Multifunctional hybrid nanoparticles composed of iron oxide, coated with caffeic acid, and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA that was used in magnetic delivery systems for siRNA the HER2 Gene in the case of breast cancer. | Cancer therapy | Breast cancer cell HER2-positive line HCC1954 | Cristofolin, T. et al. [57] | 2020 |
Curcumin-loaded Cellulose Nanoparticles | Organic | Cellulose curcumin (cellulose-CUR) nanoformulation was prepared in an aqueous solution in the presence of acetone with overnight stirring. | Cancer therapy | Prostate cancer (C4-2, LNCaP, DU-145; PC-3) | Yallapu, M. et al. [58] | 2012 |
Mesoporous silica nanoparticles | Organic/Non-metallic | The MSNs (10 mg) with AgNO3 and BSA were prepared by an electron-deposition method. | Prostate cancer theranostic | Prostate cancer PSA detection | Wang, H. et al. [59] | 2013 |
Curcumin-loaded PLGA/PVA/PLL nanoparticles | Organic | The curcumin-loaded organic PLGA/PVA/PLL nanoparticles were prepared by nano-precipitation technique. | Cancer therapy | Prostate cancer (PC-3; DU-145) | Yallapu, M. et al. [58] | 2014 |
Peptide-conjugated SPIONs | Organic/Metallic | Maleimide-functionalized QDs were conjugated with targeting peptide SP204-GGGC in an aqueous solution. | Cancer theranostic | PC-3 human prostate carcinoma | Yeh, C. et al. [60] | 2016 |
Antigen-targeted gold nanoparticles | Organic/Metallic | Pc4 loading was performed by adding 40-fold excess of Pc4 to AuNP-5kPEG-PSMA-1 solution in chloroform. | Cancer therapy | Prostate cancer, cell lines PC-3flu and PSMA-positive PC-3pip | Mangadlao, J. et al. [61] | 2018 |
Multi-walled carbon nanotubes with PEG and anti-PSMA aptamer. | Organic/Non-metallic | To stabilize MWCNTs in a solution, PEG-coated MWCNTs were prepared, given the highly hydrophobic surface of MWCNTs. Then 50 nM AntiPSMA aptamer with 5′ modification of amino group was added to the solution and stirred for 24 h at room temperature. | Cancer theranostic | PC-3 cells overexpressing PSMA | Gu, F. et al. [62] | 2018 |
Systemic nanoparticle-mediated delivery of PTEN mRNA | Organic | The prepare the hybrid mRNA NPs, the cationic lipid-like compound G0-C14 and poly(lactic-coglycolic acid) (PLGA) polymer coated with a lipid–PEG shell44 were used. Enhanced green fluorescent protein (EGFP) mRNA was used as a model mRNA in the presence of EGFP mRNA NP coated with ceramide–PEG. | Drug delivery | Prostate cancer; PCA cells DU145 and LNCaP | Islam, M.A. et al. [63] | 2018 |
Gold nanoclusters as radiosensitizing agents | Organic/Metallic | To generate PSMA-targeted Au25 NCs, the ligand CY-PSMA- was combined at pH 12 with Au3+ ions resulting in the formation of Au25 NCs. | Cancer treatment | PC-3pip and PC3flu Prostate cancer | Luo, D. et al. [64] | 2019 |
Serotonin conjugated IIrinotecan loaded nanomicelles | Organic | Briefly, 10 mg of TPGS and 2 mg of IRI were dissolved in 1 mL of methanol and added to 5 mL of phosphate buffer pH 4.5 under magnetic stirring and kept for solvent evaporation. For the preparation of ligand (serotonin) conjugated, targeted nanomicelles, plain TPGS was replaced with TPGS-ST conjugate and the rest of the procedure was the same as above. | Cancer chemotherapy | PC-3 human prostate cancer cells | Tunki, L. et al. [65] | 2020 |
Hexagonal boron nitride nanoparticles | Non-metallic | hBNs were synthesized using BA as a boron source and ammonia as a nitrogen source. The synthesis was carried out in a high-temperature furnace. | Cancer therapy | Prostate cancer (DU145 and PC3) | Ciofani, M.E. et al. [66] | 2020 |
Solid Lipid Curmcumin Nanopartciles | Organic | SLN-Curcumin(2:1), were self-assembled and combined in an O/W environment. | Cancer therapy | Non-small-cell lung cancer cell lines | Wang, W. et al. | 2012 |
Silk Fibroin | Organic | Two methods were used to formulate silk-based particles: spray drying and spray-freeze-drying. Cisplatin was incorporated at concentrations of 0.05% (w/v) into the silk formulations. In order to produce crosslinked silk formulations, genipin was added to the silk solutions at 0.05% (w/v) prior to the incorporation of cisplatin. | Drug carrier, targeted delivery | Lung cancer cells line A549 | Kim, S. et al. [67] | 2015 |
Doxorubicin-conjugated HSA nanoparticles coated with TRAIL | Organic | Thiolated doxorubicin was conjugated with sulfo-SMCC-modified HAS in aqueous media. Dox I-NP (40 mg as I) was then suspended in 0.1 mL of TRAIL solution (1 mg/mL) and sonicated in an ice bath. | Cancer therapy | Lung cancer; H226 cell-induced metastatic tumors | Choi, S. et al. [68] | 2015 |
Co-delivery of Doxorubicin and miR-519c Mediated by Porous PLGA Microparticle | Organic | The organic microparticles were prepared through the water-oil-water emulsion solvent evaporation method. | Drug delivery | Human lung; adenocarcinoma cell line A549 | Wu, D. et al. [69] | 2015 |
Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles | Metallic/Organic | The synthesis of AuNPs a standard reduction of HauCl4 in NaBH4 as a reducing and CTAB as the capping agent. AuNPs were added to PVP and conjugated with doxorubicin. | Target delivery | Human lung adenocarcinoma cells (A549), human large-cell lung carcinoma cells (H460) | Ramalingam, V. et al. [70] | 2018 |
MDNP containing a poly(N-isopropylacrylamide)-carboxymethyl chitosan shell and (PLGA) | Organic | The PLGA core was prepared by a standard emulsion method, as previously mentioned. Briefy, 4.5 mg NU7441, 20 mg SPIO, and 90 mg PLGA (L/G ratio: 50:50, inherent viscosity: 0.15–0.25 dL/g) in 5 mL dichloromethane solution was added dropwise to 5% (w/v) PVA (MW: 13,000–23,000) solution and sonicated for 10 min at 50 W. Following overnight stirring, the solution was centrifuged at 15,000 rpm for 30 min, washed, and lyophilized to obtain the PLGA NPs. | Cancer therapy | Lung cancer cells lines A549 and H460 | Menon, J. et al. [71] | 2016 |
Folic acid (FA)-conjugated polyamidoamine dendrimer (Den)-based nanoparticle (NP) system for co-delivery of siRNA | Organic | Polyethyleneimine (PEI) was covalently conjugated to fourth-generation Poly (amidoamine) dendrimer (Den) through a biofunctionalized PEG crosslinker molecule. CDDP encapsulation into Den-PEI nanoparticles was carried out via hydrolysis. The FA-PEG-NHS was conjugated to Den-PEI-CDDP (Den-PEI-CDDP-FA) through amide covalent linkage. The siRNA was encapsulated via electrostatic interaction in Den-PEI-CDDP and DenPEI-CDDP-FA nanoparticles by mixing the nanoparticles with siRNA. | Drug delivery receptor targeted | Non-small-cell lung cancer (H1299 and A549) | Amreddy, N. et al. [72] | 2017 |
Gold nanoparticles synthesized from Magnolia officinalis | Organic | Magnolia officinalis leaves were dilapidated to make the aqueous extract. A digestive budding method was used to separate gold nanoparticles from polyscattering nanoparticles using the digestive budding agents. | Cancer therapy | Lung cancer cells line A549 | Zheng, Y. et al. [73] | 2017 |
Synthesis of hollow maghemite (<gamma>-Fe2O3) | Metallic | The synthesis of hollow maghemite (γ-Fe2O3) particles was modified from spray pyrolysis. The particles at the exit of the furnace were collected with a permanent (Nd-Fe-B) magnet, followed by washing with DI water and ethanol and drying at 50 °C for 6 h. | Cancer therapy | Lung cancer cells line A549 | Li, S. et al. [74] | 2019 |
Nanoparticle | Application | Identifier |
---|---|---|
Hafnium oxide (HfO2) nanoparticle activated by radiotherapy | Locoregional recurrent (LRR) or recurrent and metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) and lung and liver metastases from any primary cancer eligible for anti-PD-1 therapy | NCT03589339 |
Iron NPs. Magnetic responsive for Thermo-ablation | Prostate Cancer | NCT02033447 |
Superparamagnetic iron oxide nanoparticles (SPIONs) with spinning magnetic field | Osteosarcoma | NCT04316091 |
Magnetic nanoparticles with cultured human corneal endothelial cells | Corneal edema | NCT04894110 |
Carbon nanoparticles | Lymph node tracer in rectal cancer | NCT03550001 NCT04482803 NCT04759820 |
Liposomes containing RNA for patient-specific tumor-associated antigens and p53 RNA | Triple-negative breast cancer | NCT02316457 |
Nab-paclitaxel pegylated liposomal doxorubicin (PLD) | Triple-negative breast cancer or ovarian cancer | NCT03719326 |
Lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ | Relapsed/refractory solid tumor malignancies or lymphoma | NCT03739931 |
Nab-paclitaxel/rituximab-coated nanoparticle AR160 | Non-Hodgkin lymphoma | NCT03003546 |
Nab-paclitaxel-pegylated liposomal doxorubicin hydrochloride l | Advanced solid tumors (spread to other places in the body) | NCT03907475 |
Lipid nanoparticle carrying mRNA | COVID-19 vaccine | NCT04813796 NCT04860258 NCT04838847 NCT04674189 NCT04652102 NCT04515147 NCT04449276 NCT04848467 |
Lipid nanoparticle carrying mRNA | Respiratory syncytial virus vaccine | NCT04528719 |
Lipid nanoparticle carrying mRNA | Rabies vaccine | NCT03713086 |
Lipid nanoparticle carrying mRNA | Cytomegalovirus vaccine | NCT04232280 |
Lipid nanoparticle carrying mRNA | Combined human metapneumovirus and parainfluenza virus type 3 vaccine | NCT04144348 |
Lipid nanoparticle carrying mRNA | Advanced solid tumor malignancies | NCT03323398 |
Lipid nanoparticle carrying mRNA | Advanced solid tumor malignancies | NCT03739931 NCT02872025 |
Lipid nanoparticle carrying mRNA | Personalized cancer vaccine | NCT03313778 NCT03897881 |
Lipid nanoparticle carrying mRNA | KRAS vaccine | NCT03948763 |
Lipid nanoparticle carrying mRNA | Personalized cancer vaccine | NCT03313778 NCT03897881 |
Lipid nanoparticle carrying mRNA | Advanced solid tumors | NCT03946800 |
Lipid nanoparticle carrying mRNA | COVID-19 vaccine | NCT04821674 |
Size- and charge-based RNA-lipoplex nanoparticles for targeting dendritic cells | Metastatic melanoma vaccine | NCT04526899 |
Size- and charge-based RNA-lipoplex nanoparticles for targeting dendritic cells | Prostate cancer vaccine | NCT04382898 |
Size- and charge-based RNA-lipoplex nanoparticles for targeting dendritic cells | Head and neck cancer vaccine | NCT04534205 |
mRNA-lipoplex nanoparticles | Ovarian cancer | NCT04163094 |
Size- and charge-based RNA-lipoplex nanoparticles for targeting dendritic cells | Colorectal cancer, melanoma, lung cancer, bladder cancer | NCT04486378 NCT03815058 NCT03289962 |
Liver-targeting lipid nanoparticle | Multiple solid tumors | NCT04710043 NCT04455620 NCT04710043 |
Size- and charge-based RNA-lipoplex nanoparticles for targeting dendritic cells | Solid tumor | NCT04503278 |
Lipid-enabled and unlocked nucleomonomer agent mRNA (LUNAR®®) | COVID-19 vaccine | NCT04728347 NCT04668339 NCT04480957 |
Lipid-enabled and unlocked nucleomonomer agent mRNA (LUNAR®®) | Ornithine transcarbamylase deficiency | NCT04442347 |
Liposome | Advanced lymphoid malignancies | NCT04072458 |
Army liposomal formulation (adjuvant) | COVID-19 vaccine | NCT04784767 |
Lipid-Inorganic Nanoparticle (LION™); 15-nm superparamagnetic iron oxide | COVID-19 vaccine (repRNA) | NCT04844268 |
Lipid nanoparticles | Transthyretin amyloidosis | NCT04601051 |
Large surface area microparticles (nanoparticulates) | Urothelial carcinoma | NCT03636256 NCT04060628 |
Large surface area microparticles (nanoparticulates) | Pancreatic adenocarcinoma, lung cancer | NCT04314895 NCT03077685 NCT03756311 |
Poly(lactic-co-glycolic acid) (PLGA) nanoparticle | Esophageal Squamous Cell Carcinoma-1 positive cancers | NCT04751786 |
Self-assembling protein nanoparticle immunogens | COVID-19 vaccine | NCT04742738 NCT04750343 |
Recombinant hemagglutinin protein nanoparticle with saponin-based Matrix-M adjuvant | Influenza vaccine | NCT04120194 |
Recombinant spike protein nanoparticle with saponin-based Matrix-M1 adjuvant | COVID-19 vaccine | NCT04611802 NCT04368988 NCT04533399 NCT04583995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, L.F.; Ferreira, A.H.; Thipe, V.C.; Varca, G.H.C.; Lima, C.S.A.; Batista, J.G.S.; Riello, F.N.; Nogueira, K.; Cruz, C.P.C.; Mendes, G.O.A.; et al. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials 2021, 11, 2579. https://doi.org/10.3390/nano11102579
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, et al. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials. 2021; 11(10):2579. https://doi.org/10.3390/nano11102579
Chicago/Turabian StyleFreitas, Lucas F., Aryel H. Ferreira, Velaphi C. Thipe, Gustavo H. C. Varca, Caroline S. A. Lima, Jorge G. S. Batista, Fabiane N. Riello, Kamila Nogueira, Cassia P. C. Cruz, Giovanna O. A. Mendes, and et al. 2021. "The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers" Nanomaterials 11, no. 10: 2579. https://doi.org/10.3390/nano11102579
APA StyleFreitas, L. F., Ferreira, A. H., Thipe, V. C., Varca, G. H. C., Lima, C. S. A., Batista, J. G. S., Riello, F. N., Nogueira, K., Cruz, C. P. C., Mendes, G. O. A., Rodrigues, A. S., Sousa, T. S., Alves, V. M., & Lugão, A. B. (2021). The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials, 11(10), 2579. https://doi.org/10.3390/nano11102579