Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations
Abstract
:1. Introduction
2. Methods and Simulation Details
3. Results and Analysis
3.1. Free Surface Velocity and Spall Strength
3.2. Shock Compression Process at Low Piston Velocities
3.3. Characteristics of Spall Damage at Low Piston Velocities
3.4. Microstrucsture during Shock-Induced Spall Process at High Piston Velocities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davison, L.; Stevens, A.L.; Kipp, M.E. Theory of spall damage accumulation in ductile metals. J. Mech. Phys. Solids 1977, 25, 11–28. [Google Scholar] [CrossRef]
- Antoun, T.; Davison, L.; Graham, R.A. Spall Fracture. In Fundamentals of Shock Wave Propagation in Solids; Springer: Berlin/Heidelberg, Germany, 2008; pp. 317–342. ISBN 0387955003. [Google Scholar]
- Dongare, A.M. Viewpoint Challenges to model the role of heterogeneities on the shock response and spall failure of metallic materials at the mesoscales. J. Mater. Sci. 2019, 55, 3157–3166. [Google Scholar] [CrossRef]
- Curran, D. Dynamic failure of solids. Phys. Rep. 1987, 147, 253–388. [Google Scholar] [CrossRef]
- Turley, W.D.; Fensin, S.J.; Hixson, R.S.; Jones, D.R.; La Lone, B.M.; Stevens, G.D.; Thomas, S.A.; Veeser, L.R. Spall response of single-crystal copper. J. Appl. Phys. 2018, 123, 055012. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.N.; Germann, T.C.; Tonks, D.L. Spall damage of copper under supported and decaying shock loading. J. Appl. Phys. 2009, 106, 123518. [Google Scholar] [CrossRef]
- Remington, T.P.; Hahn, E.N.; Zhao, S.; Flanagan, R.; Mertens, J.C.E.; Sabbaghianrad, S.; Langdon, T.G.; Wehrenberg, C.E.; Maddox, B.R.; Swift, D.C.; et al. Spall strength dependence on grain size and strain rate in tantalum. Acta Mater. 2018, 158, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.E.; Mayer, P.N. Strain rate dependence of spall strength for solid and molten lead and tin. Int. J. Fract. 2020, 222, 171–195. [Google Scholar] [CrossRef]
- Shao, J.; Wang, P.; He, A.; Zhang, R.; Qin, C. Spall strength of aluminium single crystals under high strain rates: Molecular dynamics study. J. Appl. Phys. 2013, 114, 173501. [Google Scholar] [CrossRef]
- Luo, S.-N.; An, Q.; Germann, T.C.; Han, L.-B. Shock-induced spall in solid and liquid Cu at extreme strain rates. J. Appl. Phys. 2009, 106, 013502. [Google Scholar] [CrossRef]
- Zhou, T.-T.; He, A.-M.; Wang, P.; Shao, J.-L. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study. Comput. Mater. Sci. 2019, 162, 255–267. [Google Scholar] [CrossRef]
- Escobedo, J.P.; Dennis-Koller, D.; Cerreta, E.K.; Patterson, B.M.; Bronkhorst, C.A.; Hansen, B.L.; Tonks, D.; Lebensohn, R.A. Effects of grain size and boundary structure on the dynamic tensile response of copper. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Xiang, M.; Zeng, X.; Chen, J. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum. Mech. Mater. 2015, 84, 12–27. [Google Scholar] [CrossRef]
- Cheng, J.C.; Li, H.Y.; Li, C.; Xiao, X.H.; Zhong, Z.Y.; Lu, L.; Luo, S.N. Effects of second-phase boron particles on impact response of aluminum. Mater. Sci. Eng. A 2020, 793, 139805. [Google Scholar] [CrossRef]
- Minich, R.W.; Cazamias, J.U.; Kumar, M.; Schwartz, A.J. Effect of microstructural length scales on spall behavior of copper. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35, 2663–2673. [Google Scholar] [CrossRef]
- Fensin, S.J.; Jones, D.R.; Walker, E.K.; Farrow, A.; Imhoff, S.D.; Clarke, K.; Trujillo, C.P.; Martinez, D.T.; Gray, G.T.; Cerreta, E.K. The effect of distribution of second phase on dynamic damage. J. Appl. Phys. 2016, 120, 085901. [Google Scholar] [CrossRef]
- Fensin, S.J.; Walker, E.K.; Cerreta, E.K.; Trujillo, C.P.; Martinez, D.T.; Gray, G.T. Dynamic failure in two-phase materials. J. Appl. Phys. 2015, 118, 235305. [Google Scholar] [CrossRef]
- Hixson, R.S.; Johnson, J.N.; Gray, G.T.; Price, J.D. Effects of interfacial bonding on spallation in metal-matrix composites. AIP Conf. Proc. 1996, 370, 555–558. [Google Scholar] [CrossRef]
- Razorenov, S.V.; Kanel, G.I.; Herrmann, B.; Zaretsky, E.B.; Ivanchihina, G.E.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Influence of nano-size inclusions on spall fracture of copper single crystals. AIP Conf. Proc. 2008, 955, 581–584. [Google Scholar] [CrossRef]
- Whelchel, R.L.; Kennedy, G.B.; Dwivedi, S.K.; Sanders, T.H.; Thadhani, N.N. Spall behavior of rolled aluminum 5083-H116 plate. J. Appl. Phys. 2013, 113, 233506. [Google Scholar] [CrossRef]
- Pedrazas, N.A.; Worthington, D.L.; Dalton, D.A.; Sherek, P.A.; Steuck, S.P.; Quevedo, H.J.; Bernstein, A.C.; Taleff, E.M.; Ditmire, T. Effects of microstructure and composition on spall fracture in aluminum. Mater. Sci. Eng. A 2012, 536, 117–123. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Yang, M.; Jiang, P.; Yuan, F.; Wu, X. Shock and spall behaviors of a high specific strength steel: Effects of impact stress and microstructure. J. Appl. Phys. 2017, 121, 135901. [Google Scholar] [CrossRef]
- Dalton, D.A.; Worthington, D.L.; Sherek, P.A.; Pedrazas, N.A.; Quevedo, H.J.; Bernstein, A.C.; Rambo, P.; Schwarz, J.; Edens, A.; Geissel, M.; et al. Microstructure dependence of dynamic fracture and yielding in aluminum and an aluminum alloy at strain rates of 2 × 106 s−1 and faster. J. Appl. Phys. 2011, 110, 103509. [Google Scholar] [CrossRef]
- Kanamori, K.; Toriumi, S.; Kimoto, Y.; Yonezu, A. Repeated laser shock-wave adhesion test for metallic coatings: Adhesion durability and its mechanism studied by molecular dynamics simulation. Coatings 2021, 11, 291. [Google Scholar] [CrossRef]
- Kanel, G.I. Spall fracture: Methodological aspects, mechanisms and governing factors. Int. J. Fract. 2010, 163, 173–191. [Google Scholar] [CrossRef]
- Burtsev, V.V.; Lebedev, A.I.; Mikhailov, A.L.; Ogorodnikov, V.A.; Oreshkov, O.V.; Panov, K.N.; Rudnev, A.V.; Svirskii, O.V.; Syrunin, M.A.; Trutnev, Y.A.; et al. Use of multiframe proton radiography to investigate fast hydrodynamic processes. Combust. Explos. Shock Waves 2011, 47, 627–638. [Google Scholar] [CrossRef]
- Qi, M.L.; Bie, B.X.; Zhao, F.P.; Hu, C.M.; Fan, D.; Ran, X.X.; Xiao, X.H.; Yang, W.G.; Li, P.; Luo, S.N. A metallography and X-ray tomography study of spall damage in ultrapure Al. AIP Adv. 2014, 4, 077118. [Google Scholar] [CrossRef]
- Sliwa, M.; McGonegle, D.; Wehrenberg, C.; Bolme, C.A.; Heighway, P.G.; Higginbotham, A.; Lazicki, A.; Lee, H.J.; Nagler, B.; Park, H.S.; et al. Femtosecond X-ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum. Phys. Rev. Lett. 2018, 120, 265502. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.N.; Germann, T.C.; Tonks, D.L. The effect of vacancies on dynamic response of single crystal Cu to shock waves. J. Appl. Phys. 2010, 107, 8–11. [Google Scholar] [CrossRef]
- Reddy, K.V.; Deng, C.; Pal, S. Intensification of shock damage through heterogeneous phase transition and dislocation loop formation due to presence of pre-existing line defects in single crystal Cu. J. Appl. Phys. 2019, 126, 174302. [Google Scholar] [CrossRef]
- Wang, X.X.; He, A.M.; Zhou, T.T.; Wang, P. Spall damage in single crystal tin under shock wave loading: A molecular dynamics simulation. Mech. Mater. 2021, 160, 103991. [Google Scholar] [CrossRef]
- Hahn, E.N.; Germann, T.C.; Ravelo, R.; Hammerberg, J.E.; Meyers, M.A. On the ultimate tensile strength of tantalum. Acta Mater. 2017, 126, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Cui, J.; Ma, K.; Xiang, M. Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by molecular dynamics simulations. Int. J. Heat Mass Transf. 2020, 158, 120013. [Google Scholar] [CrossRef]
- Mayer, P.N.; Mayer, A.E. Size distribution of pores in metal melts at non-equilibrium cavitation and further stretching, and similarity with the spall fracture of solids. Int. J. Heat Mass Transf. 2018, 127, 643–657. [Google Scholar] [CrossRef]
- Liu, T.; Leazer, J.D.; Brewer, L.N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles. Acta Mater. 2019, 168, 13–23. [Google Scholar] [CrossRef]
- Yang, C.; Cao, L.; Gao, Y.; Cheng, P.; Zhang, P.; Kuang, J.; Zhang, J.; Liu, G.; Sun, J. Nanostructural Sc-based hierarchy to improve the creep resistance of Al–Cu alloys. Mater. Des. 2020, 186, 108309. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Q.; Zhang, Z.; Li, L.; Tian, W.; Liu, R.; Zhang, P.; Xu, Y.; Li, Y.; Zhang, Z.; et al. Nanoparticle additions promote outstanding fracture toughness and fatigue strength in a cast Al–Cu alloy. Mater. Des. 2020, 186, 108221. [Google Scholar] [CrossRef]
- Liu, T.; Leazer, J.D.; Bannister, H.; Story, W.A.; Bouffard, B.D.; Brewer, L.N. Influence of Alloy Additions on the Microstructure, Texture, and Hardness of Low-Pressure Cold-Sprayed Al-Cu Alloys. J. Therm. Spray Technol. 2019, 28, 904–916. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.C.; Li, X.Y.; Lu, K. Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy. Acta Mater. 2020, 182, 207–214. [Google Scholar] [CrossRef]
- Santos-Güemes, R.; Bellón, B.; Esteban-Manzanares, G.; Segurado, J.; Capolungo, L.; LLorca, J. Multiscale modelling of precipitation hardening in Al–Cu alloys: Dislocation dynamics simulations and experimental validation. Acta Mater. 2020, 188, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Mojumder, S. Molecular dynamics study of plasticity in Al-Cu alloy nanopillar due to compressive loading. Phys. B Condens. Matter 2018, 530, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Pogorelko, V.V.; Mayer, A.E. Influence of copper inclusions on the strength of aluminum matrix at high-rate tension. Mater. Sci. Eng. A 2015, 642, 351–359. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhakhovskii, V.V.; Inogamov, N.A.; Petrov, Y.V.; Ashitkov, S.I.; Nishihara, K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 2009, 255, 9592–9596. [Google Scholar] [CrossRef]
- Wu, B.; Wu, F.; Wang, P.; He, A.; Wu, H. Shock-induced ejecta transport and breakup in reactive gas. Phys. Chem. Chem. Phys. 2020, 22, 14857–14867. [Google Scholar] [CrossRef] [PubMed]
- Zhakhovsky, V.V.; Budzevich, M.M.; Inogamov, N.A.; Oleynik, I.I.; White, C.T. Two-zone elastic-plastic single shock waves in solids. Phys. Rev. Lett. 2011, 107, 1–4. [Google Scholar] [CrossRef]
- Budzevich, M.M.; Zhakhovsky, V.V.; White, C.T.; Oleynik, I.I. Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum. Phys. Rev. Lett. 2012, 109, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishin, Y.; Mehl, M.J.; Papaconstantopoulos, D.A.; Voter, A.F.; Kress, J.D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 224106. [Google Scholar] [CrossRef] [Green Version]
- Apostol, F.; Mishin, Y. Interatomic potential for the Al-Cu system. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 054116. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Kelchner, C.L.; Plimpton, S. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 58, 11085–11088. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Xiang, M.; Hu, H.; Chen, J.; Long, Y. Molecular dynamics simulations of micro-spallation of single crystal lead. Model. Simul. Mater. Sci. Eng. 2013, 21, 05505. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, F.; He, A.; Wang, P. An atomic view on spall responses of release melted lead induced by decaying shock loading. J. Appl. Phys. 2019, 125, 155107. [Google Scholar] [CrossRef]
- Chen, X.; Asay, J.R.; Dwivedi, S.K.; Field, D.P. Spall behavior of aluminum with varying microstructures. J. Appl. Phys. 2006, 99, 023528. [Google Scholar] [CrossRef]
- Thompson, A.P.; Plimpton, S.J.; Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 2009, 131, 154107. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Wu, B.; Wang, P.; Shao, J.-L.; He, A.-M. Spalling Characteristics Associated with Shock-Induced Microstructure Based on Molecular Dynamics Simulation of Single-Crystal Aluminum. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Xiang, M.; Cui, J.; Yang, Y.; Liao, Y.; Wang, K.; Chen, Y.; Chen, J. Shock responses of nanoporous aluminum by molecular dynamics simulations. Int. J. Plast. 2017, 97, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J.S.; Wayman, C.M. Bain Strain, Lattice Correspondences, and Deformations Related To Martensitic Transformations. Met. Trans 1972, 3, 1113–1121. [Google Scholar] [CrossRef]
- Zhilyaev, P.A.; Kuksin, A.Y.; Stegaǐlov, V.V.; Yanilkin, A.V. Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading. Phys. Solid State 2010, 52, 1619–1624. [Google Scholar] [CrossRef]
- Mayer, A.E.; Mayer, P.N. Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models. Int. J. Mech. Sci. 2019, 157–158, 816–832. [Google Scholar] [CrossRef]
- Bober, D.; Rhee, M.; Barton, N.; Kumar, M. Observation of tungsten particle deformation inside a shock compressed polymer. AIP Conf. Proc. 2020, 2272, 110002. [Google Scholar] [CrossRef]
- He, L.; Wang, F.; Zeng, X.; Yang, X.; Qi, Z. Atomic insights into shock-induced spallation of single-crystal aluminum through molecular dynamics modeling. Mech. Mater. 2020, 143, 103343. [Google Scholar] [CrossRef]
up (km/s) | ||||||
---|---|---|---|---|---|---|
Al | Al–Cu | Al | Al–Cu | Al | Al–Cu | |
0.6 | 7.58 | 8.36 | 1.81 | |||
0.7 | 9.13 | 7.79 | 10.91 | 7.98 | 1.35 | 1.78 |
0.8 | 9.71 | 7.64 | 10.26 | 7.81 | 1.87 | 1.72 |
0.9 | 7.68 | 7.56 | 8.16 | 7.73 | 1.8 | 1.68 |
1 | 7.8 | 7.76 | 7.93 | 7.44 | 1.49 | 1.55 |
1.1 | 7.89 | 7.81 | 7.77 | 7.8 | 1.48 | 1.31 |
1.2 | 7.88 | 7.71 | 7.84 | 7.56 | 1.49 | 1.3 |
1.3 | 8.09 | 7.8 | 7.79 | 7.39 | 1.49 | 1.31 |
1.4 | 7.97 | 7.84 | 7.95 | 7.15 | 1.61 | 1.49 |
1.5 | 9.58 | 7.71 | 9.5 | 7.45 | 1.73 | 1.35 |
2 | 8.11 | 7.76 | 8.06 | 7.44 | 1.51 | 1.51 |
2.5 | 6.74 | 6.67 | 6.13 | 6.18 | 1.00 | 1.01 |
3 | 5.72 | 5.67 | 5.89 | 5.92 | 1.01 | 1.04 |
4 | 4.59 | 4.57 | 5.55 | 5.31 | 1.01 | 1.06 |
5 | 3.5 | 3.47 | 4.48 | 4.09 | 0.83 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.-D.; Chen, P.-Y.; Wang, P.; He, A.-M. Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations. Nanomaterials 2021, 11, 2603. https://doi.org/10.3390/nano11102603
Jiang D-D, Chen P-Y, Wang P, He A-M. Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations. Nanomaterials. 2021; 11(10):2603. https://doi.org/10.3390/nano11102603
Chicago/Turabian StyleJiang, Dong-Dong, Peng-Yu Chen, Pei Wang, and An-Min He. 2021. "Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations" Nanomaterials 11, no. 10: 2603. https://doi.org/10.3390/nano11102603
APA StyleJiang, D. -D., Chen, P. -Y., Wang, P., & He, A. -M. (2021). Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations. Nanomaterials, 11(10), 2603. https://doi.org/10.3390/nano11102603