Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Materials to Be Transferred—Donor Fabrication
2.2. LIFT
2.3. Sensor Testing Setup
3. Results and Discussion
3.1. LIFT Printing
3.2. Sensor Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Gu, X.; Ma, G.; Shi, S.; Wang, W.; Zuo, X.; Zhang, X. Spatial and Temporal Variations of Air Quality and Six Air Pollutants in China during 2015–2017. Sci. Rep. 2019, 9, 15201. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.-N.; Yan, B. Simultaneous Determination of Indoor Ammonia Pollution and Its Biological Metabolite in the Human Body with a Recyclable Nanocrystalline Lanthanide-Functionalized MOF. Nanoscale 2016, 8, 2881–2886. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ma, Z.; Lin, Z.; Song, H.; Yan, S.; Shi, Y. High-Sensitive Ammonia Sensors Based on Tin Monoxide Nanoshells. Nanomaterials 2019, 9, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Li, X.; Yao, P.; Wang, J.; Sun, Y.; Dong, L. Zinc Oxide Coated Tin Oxide Nanofibers for Improved Selective Acetone Sensing. Nanomaterials 2018, 8, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palla Papavlu, A.; Mattle, T.; Temmel, S.; Lehmann, U.; Hintennach, A.; Grisel, A.; Wokaun, A.; Lippert, T. Highly Sensitive SnO2 Sensor via Reactive Laser-Induced Transfer. Sci. Rep. 2016, 6, 25144. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Rigoni, F.; Tognolini, S.; Borghetti, P.; Drera, G.; Pagliara, S.; Goldoni, A.; Sangaletti, L. Enhancing the Sensitivity of Chemiresistor Gas Sensors Based on Pristine Carbon Nanotubes to Detect Low-Ppb Ammonia Concentrations in the Environment. Analyst 2013, 138, 7392–7399. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-J.; Choi, S.-W.; Byun, Y.T. Room Temperature Monitoring of Hydrogen Peroxide Vapor Using Platinum Nanoparticles-Decorated Single-Walled Carbon Nanotube Networks. Sens. Actuators B Chem. 2018, 256, 744–750. [Google Scholar] [CrossRef]
- Ammu, S.; Dua, V.; Agnihotra, S.R.; Surwade, S.P.; Phulgirkar, A.; Patel, S.; Manohar, S.K. Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors. J. Am. Chem. Soc. 2012, 134, 4553–4556. [Google Scholar] [CrossRef]
- Wei, L.; Lu, D.; Wang, J.; Wei, H.; Zhao, J.; Geng, H.; Zhang, Y. Highly Sensitive Detection of Trinitrotoluene in Water by Chemiresistive Sensor Based on Noncovalently Amino Functionalized Single-Walled Carbon Nanotube. Sens. Actuator B Chem. 2014, 190, 529–534. [Google Scholar] [CrossRef]
- Fennell, J.; Hamaguchi, H.; Yoon, B.; Swager, T. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes. Sensors 2017, 17, 982. [Google Scholar] [CrossRef] [Green Version]
- Pitroda, J.; Jethwa, B.; Dave, D.S.K. A Critical Review on Carbon Nanotubes. Int. J. Constr. Res. Civ. Eng. 2016, 2, 36–42. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Ling, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, P.; Piqué, A. Introduction to Laser-Induced Transfer and Other Associated Processes. In Laser Printing of Functional Materials: Fundamentals & Applications in Electronics, 3D Microfabrication and Biomedicine; John Wiley & Sons, Ltd.: New York, NY, USA, 2018; pp. 3–16. ISBN 978-3-527-80510-5. [Google Scholar]
- Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T. Laser-Induced Forward Transfer of Single-Walled Carbon Nanotubes. Appl. Phys. A 2014, 117, 371–376. [Google Scholar] [CrossRef]
- Arutyunyan, N.R.; Komlenok, M.S.; Kononenko, T.V.; Dezhkina, M.A.; Popovich, A.F.; Konov, V.I. Printing of Single-Wall Carbon Nanotubes via Blister-Based Laser-Induced Forward Transfer. Laser Phys. 2019, 29, 026001. [Google Scholar] [CrossRef]
- Boutopoulos, C.; Pandis, C.; Giannakopoulos, K.; Pissis, P.; Zergioti, I. Polymer/Carbon Nanotube Composite Patterns via Laser Induced Forward Transfer. Appl. Phys. Lett. 2010, 96, 041104. [Google Scholar] [CrossRef]
- Lasserre, F.; Rosenkranz, A.; Souza Carmona, N.; Roble, M.; Ramos-Moore, E.; Diaz-Droguett, D.E.; Mücklich, F. Simultaneous Deposition of Carbon Nanotubes and Decoration with Gold–Palladium Nanoparticles by Laser-Induced Forward Transfer. Appl. Phys. A 2016, 122, 150. [Google Scholar] [CrossRef]
- Picaud, F.; Girardet, C.; Rao, A.M. A comparative study of single- and multiwalled carbon nanotube sensitivity to ammonia. J. Appl. Phys. 2009, 125, 014315. [Google Scholar] [CrossRef]
- Nagel, M.; Hany, R.; Lippert, T.; Molberg, M.; Nueesch, F.A.; Rentsch, D. Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study. Macromol. Chem. Phys. 2007, 208, 277–286. [Google Scholar] [CrossRef]
- Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T. Laser-Induced Forward Transfer of Hybrid Carbon Nanostructures. Appl. Surf. Sci. 2016, 374, 312–317. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [Green Version]
- Pargoletti, E.; Verga, S.; Chiarello, G.L.; Longhi, M.; Cerrato, G.; Giordana, A.; Cappelletti, G. Exploring SnxTi1−xO2 Solid Solutions Grown onto Graphene Oxide (GO) as Selective Toluene Gas Sensors. Nanomaterials 2020, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Su, H.C.; Zhang, M.; Bosze, W.; Myung, N.V. Tin Dioxide Functionalized Single-Walled Carbon Nanotube (SnO2/SWNT)-Based Ammonia Gas Sensors and Their Sensing Mechanism. J. Electrochem. Soc. 2014, 161, B283–B290. [Google Scholar] [CrossRef]
- Kerdcharoen, T.; Wongchoosuk, C. 11-Carbon nanotube and metal oxide hybrid materials for gas sensing. In Electronic and Optical Materials, Semiconductor Gas Sensors; Woodhead Publishing Series; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 386–407. ISBN 9780857092366. [Google Scholar] [CrossRef]
- Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L. Gas Sensing at the Nanoscale: Engineering SWCNT-ITO Nano-Heterojunctions for the Selective Detection of NH3 and NO2 Target Molecules. Nanotechnology 2017, 28, 035502. [Google Scholar] [CrossRef]
- Tonezzer, M.; Thai, N.X.; Gasperi, F.; Van Duy, N.; Biasioli, F. Quantitative Assessment of Trout Fish Spoilage with a Single Nanowire Gas Sensor in a Thermal Gradient. Nanomaterials 2021, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Van Hieu, N.; Thuy, L.T.B.; Chien, N.D. Highly Sensitive Thin Film NH3 Gas Sensor Operating at Room Temperature Based on SnO2/MWCNTs Composite. Sens. Actuator B Chem. 2008, 129, 888–895. [Google Scholar] [CrossRef]
- Hoa, N.D.; Quy, N.V.; Kim, D. Nanowire Structured SnOx-SWNT Composites: High Performance Sensor for NOx Detection. Sens. Actuator B Chem. 2009, 142, 253–259. [Google Scholar] [CrossRef]
- Choi, K.-Y.; Park, J.-S.; Park, K.-B.; Kim, H.J.; Park, H.-D.; Kim, S.-D. Low Power Micro-Gas Sensors Using Mixed SnO2 Nanoparticles and MWCNTs to Detect NO2, NH3, and Xylene Gases for Ubiquitous Sensor Network Applications. Sens. Actuator B Chem. 2010, 150, 65–72. [Google Scholar] [CrossRef]
- Barandun, G.; Soprani, M.; Naficy, S.; Grell, M.; Kasimatis, M.; Chiu, K.L.; Ponzoni, A.; Güder, F. Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of WaterSoluble Gases. ACS Sens. 2019, 4, 1662–1669. [Google Scholar] [CrossRef]
- Shahabuddina, M.; Sharmaa, A.; Kumar, J.; Tomar, M.; Umar, A.; Gupta, V. Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sens. Actuators B 2014, 194, 410–418. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z.; Wang, N.; Wang, J.; Liu, W.; Sun, K.; Fuc, Y.Q.; Wang, Z. High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuators B 2016, 235, 222–231. [Google Scholar] [CrossRef]
- Tai, H.; Duan, Z.; He, Z.; Li, X.; Xu, J.; Liu, B.; Jiang, Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B Chem. 2019, 298, 126874. [Google Scholar] [CrossRef]
- Güntner, A.T.; Wied, M.; Pineau, N.J.; Pratsinis, S.E. Rapid and Selective NH3 Sensing by Porous CuBr. Adv. Sci. 2020, 7, 1903390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sensing Material | Operating Temperature | Concentration (ppm) | Sensor Response (%) | Response Time | Recovery Time | Ref. |
---|---|---|---|---|---|---|
SWCNT@SnO2 | RT | 25 | 0.126 | 13 s | 123 s | This work |
SnO2 + 15%MWCNT | RT | 200 | 0.27 | <5 min | <5 min | [29] |
SnOX-SWNT | 200 °C | 1000 | 0.81 | 2.02 min | 3.14 min | [30] |
SnO2 + 1%wt MWCNT | 220 | 60 | 0.19 | >100 s | >100 s | [31] |
Cellulose fiber | RT | 0.2–1000 | 40 (80 ppm) | 186 s | 163 s | [32] |
SnO2-Pt | 230 °C | 1 | - | 1 s | 59 s | [33] |
Co3O4 nanosheets | RT | 0.2–100 | - | 9 s | 134 s | [34] |
TiO2/Ti3C2Tx | RT | 0.5–10 | 3.1 (10 ppm) | 33 s | 277 s | [35] |
CuBr | RT | 5 ppb–5 ppm | 800 (500 ppb) | 132 s | 50 s | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonciu, A.F.; Filipescu, M.; Voicu, S.I.; Lippert, T.; Palla-Papavlu, A. Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer. Nanomaterials 2021, 11, 2604. https://doi.org/10.3390/nano11102604
Bonciu AF, Filipescu M, Voicu SI, Lippert T, Palla-Papavlu A. Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer. Nanomaterials. 2021; 11(10):2604. https://doi.org/10.3390/nano11102604
Chicago/Turabian StyleBonciu, Anca F., Mihaela Filipescu, Stefan I. Voicu, Thomas Lippert, and Alexandra Palla-Papavlu. 2021. "Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer" Nanomaterials 11, no. 10: 2604. https://doi.org/10.3390/nano11102604
APA StyleBonciu, A. F., Filipescu, M., Voicu, S. I., Lippert, T., & Palla-Papavlu, A. (2021). Facile Fabrication of Hybrid Carbon Nanotube Sensors by Laser Direct Transfer. Nanomaterials, 11(10), 2604. https://doi.org/10.3390/nano11102604