Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures
Abstract
:1. Introduction
2. Pure Noble Metal Nanostructured Material-Based SERS Sensor
3. Hybrid Nanostructured SERS Sensors
4. Aptasensor-Introduced Optical Sensors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
APTMS | (3-aminopropyl) trimethoxy silane |
BaP | benzo(a)pyrene |
BZT | benzothiazole |
BPA | bisphenol A |
BBP | butyl benzyl phthalate |
β-CD | β-cyclodextrin |
CYH | cyclohexane |
DEHP | di-2-ethylhexyl phthalate |
DNA | deoxyribonucleic acid |
DTNB | 5,5′-dithio-bis(2-nitrobenzoic acid) |
EDC | N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride |
GO | graphene oxide |
HCH | hexachlorocyclohexane |
MIP | molecularly imprinted polymers |
NHS | N-hydroxysulfosuccinimide |
NP | nanoparticle |
NSt | nanostar |
PAE | phthalic acid ester |
PAH | polycyclic aromatic hydrocarbon |
PCB | polychlorinated biphenyl |
QD | quantum dot |
rGO | reduced graphene oxide |
RNA | ribonucleic acid |
SELEX | systemic evolution of ligands by exponential enrichment |
SEM | scanning electron microscope |
SERS | surface-enhanced Raman scattering |
SPME | solid-phase microextraction |
SPR | surface plasmon resonance |
SVOC | semi-volatile organic compounds |
TEM | transmission electron microscope |
UCNPs | up-conversion nanoparticles |
ZIF | zeolite imidazole framework |
References
- Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Appl. Catal. B 2020, 267, 118654. [Google Scholar] [CrossRef]
- Kochylas, I.; Gardelis, S.; Likodimos, V.; Giannakopoulos, K.P.; Falaras, P.; Nassiopoulou, A.G. Improved surface-enhanced-Raman scattering sensitivity using Si nanowires/silver nanostructures by a single step metal-assisted chemical etching. Nanomaterials 2021, 11, 1760. [Google Scholar] [CrossRef]
- Nancy, P.; Jose, J.; Joy, N.; Valluvadasan, S.; Philip, R.; Antoine, R.; Thomas, S.; Kalarikkal, N. Fabrication of silver-decorated graphene oxide nanohybrids via pulsed laser ablation with excellent antimicrobial and optical limiting performance. Nanomaterials 2021, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Zavyalova, E.; Ambartsumyan, O.; Zhdanov, G.; Gribanyov, D.; Gushchin, V.; Tkachuk, A.; Rudakova, E.; Nikiforova, M.; Kuznetsova, N.; Popova, L.; et al. SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2. Nanomaterials 2021, 11, 1394. [Google Scholar] [CrossRef]
- Amicucci, C.; D’Andrea, C.; De Angelis, M.; Banchelli, M.; Pini, R.; Mattein, P. Cost effective silver nanowire-decorated graphene paper for drop-on SERS biodetection. Nanomaterials 2021, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Shen, L.; Guo, Y.; Wang, X.; Wang, X.; Hao, Z.; Sun, H. SERRS Detection on silver nanoparticles supported on acid-treated melamine-resin microspheres. Nanomaterials 2021, 11, 1337. [Google Scholar] [CrossRef]
- Ait Bamai, Y. Semi-volatile organic compounds (SVOCs): Phthalates and phosphorous frame retardants and health risks. In Indoor Environmental Quality and Health Risk toward Healthier Environment for All; Kishi, R., Norbäck, D., Araki, A., Eds.; Springer: Singapore, 2020; pp. 159–178. [Google Scholar]
- Wang, L.; Zhang, Y.; Liu, Y.; Gong, X.; Zhang, T.; Sun, H. Widespread occurrence of bisphenol A in daily clothes and its high exposure risk in humans. Environ. Sci. Technol. 2019, 53, 7095–7102. [Google Scholar] [CrossRef] [PubMed]
- Sukiene, V.; Von Goetz, N.; Gerecke, A.C.; Bakker, M.I.; Delmaar, C.J.; Hungerbuhler, K. Direct and air-mediated transfer of labeled SVOCs from indoor sources to dust. Environ. Sci. Technol. 2017, 51, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Raffy, G.; Mercier, F.; Blanchard, O.; Derbez, M.; Dassonville, C.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-volatile organic compounds in the air and dust of 30 French schools: A pilot study. Indoor Air 2017, 27, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Simon, L. Time constant for the dermal absorption of semivolatile organic compounds from the gas phase of indoor air. Int. J. Heat Mass Tran. 2019, 144, 118687. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. SVOC exposure indoors: Fresh look at dermal pathways. Indoor Air 2012, 22, 356–377. [Google Scholar] [CrossRef]
- Wenger, Y.; Li, D.; Jolliet, O. Indoor intake fraction considering surface sorption of air organic compounds for life cycle assessment. Int. J. Life Cycle Assess. 2012, 17, 919–931. [Google Scholar] [CrossRef]
- Maddela, N.R.; Venkateswarlu, K.; Kakarla, D.; Megharaj, M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. Environ. Pollut. 2020, 266, 115240. [Google Scholar] [CrossRef]
- Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C.G.; Sundell, J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ. Health Perspect. 2008, 116, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, C.; Liang, Y.; Xu, Y. Fate and Transport of phthalates in indoor environments and the influence of temperature: A case study in a test house. Environ. Sci. Technol. 2015, 49, 9674–9681. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Wang, X.; Li, H.; Li, X.; Xu, Y. Direct transfer of phthalate and alternative plasticizers from indoor source products to dust: Laboratory measurements and predictive modeling. Environ. Sci. Technol. 2021, 55, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, O.; Glorennec, P.; Mercier, F.; Bonvallot, N.; Chevrier, C.; Ramalho, O.; Mandin, C.; Bot, B.L. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ. Sci. Technol. 2014, 48, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Melymuk, L.; Bohlin-Nizzetto, P.; Vojta, S.; Kratka, M.; Kukucka, P.; Audy, O.; Pribylova, P.; Klanova, J. Distribution of legacy and emerging semivolatile organic compounds in five indoor matrices in a residential environment. Chemosphere 2016, 153, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Morrison, G.C.; Weschler, C.J.; Beko, G. Dermal uptake directly from air under transient conditions: Advances in modeling and comparisons with experimental results for human subjects. Indoor Air 2016, 26, 913–924. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Zhang, Y. Predicting dermal exposure to gas-phase semivolatile organic compounds (SVOCs): A further study of SVOC mass transfer between clothing and skin surface lipids. Environ. Sci. Technol. 2018, 52, 4676–4683. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, X.; Allen, M.R. Measurements of parameters controlling the emissions of organophosphate flame retardants in indoor environments. Environ. Sci. Technol. 2018, 52, 5821–5829. [Google Scholar] [CrossRef]
- Bonvallot, N.; Mandin, C.; Mercier, F.; Le Bot, B.; Glorennec, P. Health ranking of ingested semi-volatile organic compounds in house dust: An application to France. Indoor Air 2010, 20, 458–472. [Google Scholar] [CrossRef]
- Dang, H.; Park, S.-G.; Wu, Y.; Choi, N.; Yang, J.-Y.; Lee, S.; Joo, S.-W.; Chen, L.; Choo, J. Reproducible and sensitive plasmonic sensing platforms based on Au-nanoparticle-internalized nanodimpled substrates. Adv. Funct. Mater. 2021, 31, 2105703. [Google Scholar] [CrossRef]
- Oh, M.-K.; De, R.; Yim, S.-Y. Highly sensitive VOC gas sensor employing deep cooling of SERS film. J. Raman Spectrosc. 2018, 49, 800–809. [Google Scholar] [CrossRef]
- Petrov, D.V.; Zaripov, A.R.; Toropov, N.A. Enhancement of Raman scattering of a gaseous medium near the surface of a silver holographic grating. Opt. Lett. 2017, 42, 4728–4731. [Google Scholar] [CrossRef]
- Jahn, M.; Patze, S.; Hidi, I.J.; Knipper, R.; Radu, A.I.; Muhlig, A.; Yuksel, S.; Peksa, V.; Weber, K.; Mayerhofer, T.; et al. Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 2016, 141, 756–793. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Chu, S.; Senthilnathan, K.; Babu, P.; Nakkeeran, K.; Li, Q. Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl. Sci. 2019, 9, 949. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, X. Microfluidics-based plasmonic biosensing system based on patterned plasmonic nanostructure arrays. Micromachines 2021, 12, 826. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, L.; Korposh, S.; Correia, R.; Morgan, S.P. Volatile organic compound vapour measurements using a localised surface plasmon resonance optical fibre sensor decorated with a metal-organic framework. Sensors 2021, 21, 1420. [Google Scholar] [CrossRef] [PubMed]
- Strobbia, P.; Languirand, E.; Cullum, B.M. Recent advances in plasmonic nanostructures for sensing: A review. Opt. Eng. 2015, 54, 100902. [Google Scholar] [CrossRef] [Green Version]
- Cong, S.; Liu, X.; Jiang, Y.; Zhang, W.; Zhao, Z. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation 2020, 1, 100051. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.R.; Lucotti, A.; Tommasini, M.; Neri, F.; Trusso, S.; Ossi, P.M. SERS detection and DFT calculation of 2-naphthalene thiol adsorbed on Ag and Au probes. Sens. Actuators B Chem. 2016, 237, 545–555. [Google Scholar] [CrossRef]
- Bao, H.; Wang, Y.; Zhang, H.; Zhao, Q.; Liu, G.; Cai, W. Ultrathin tin oxide layer-wrapped gold nanoparticles induced by laser ablation in solutions and their enhanced performances. J. Colloid Interface Sci. 2017, 489, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.R.; Gao, Z.; Blaber, M.G.; Huang, R.; Schatz, G.C.; Van Duyne, R.P.; Haynes, C.L. Surface-enhanced Raman spectroscopy detection of ricin B chain in human blood. J. Phys. Chem. C 2016, 120, 20961–20969. [Google Scholar] [CrossRef]
- Fu, J.H.; Zhong, Z.; Xie, D.; Guo, Y.J.; Kong, D.X.; Zhao, Z.X.; Zhao, Z.X.; Li, M. SERS-Active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew. Chem. Int. Ed. 2020, 59, 20489–20498. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Zhao, B.C.; Hao, R.; Wang, Z.; Hao, Y.W.; Zhao, B.; Liu, Y.Q. Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. J. Hazard Mater. 2020, 385, 121510. [Google Scholar] [CrossRef]
- Jia, M.; Li, S.; Zang, L.; Lu, X.; Zhang, H. Analysis of biomolecules based on the surface enhanced Raman spectroscopy. Nanomaterials 2018, 8, 730. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liu, G.; Zhang, H.; Li, Y.; Cai, W. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. J. Hazard. Mater. 2019, 368, 429–435. [Google Scholar] [CrossRef]
- Qu, L.L.; Geng, Z.Q.; Wang, W.; Yang, K.C.; Wang, W.P.; Han, C.Q.; Yang, G.H.; Vajtai, R.; Li, D.W.; Ajayan, P.M. Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants. J. Hazard. Mater. 2019, 379, 120823. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, G.; Han, F.; Li, X.; Chen, B.; Xu, Q.; Zhu, X.; Chu, Z.; Kong, M.; Huang, Q. Nanocontainers made of various materials with tunable shape and size. Sci. Rep. 2013, 3, 2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, N.H.; Lee, C.; Jang, S.; Lee, J.I.; Joo, S.W. Vibrational Spectroscopic Estimation of semivolatile organic compound evaporation from glass surfaces. Bull. Korean Chem. Soc. 2020, 41, 1169–1174. [Google Scholar] [CrossRef]
- Ben-Jaber, S.; Peveler, W.J.; Quesada-Cabrera, R.; Sol, C.W.O.; Papakonstantinou, I.; Parkin, I.P. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale 2017, 9, 16459–16466. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.; Song, M.S.; Ly, N.H.; Lee, S.Y.; Joo, S.W. Nanostars on nanopipette tips: A Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. Angew. Chem. Int. Ed. 2019, 58, 2710–2714. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, G.; Huang, Q.; Huang, Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. J. Hazard. Mater. 2012, 211–212, 389–395. [Google Scholar] [CrossRef]
- Lafuente, M.; Sanz, D.; Urbiztondo, M.; Santamaria, J.; Pina, M.P.; Mallada, R. Gas phase detection of chemical warfare agents CWAs with portable Raman. J. Hazard. Mater. 2020, 384, 121279. [Google Scholar] [CrossRef]
- Kahkhaie, V.R.; Yousefi, M.H.; Darbani, S.M.R.; Mobashery, A. Enhanced Raman intensity of pollutants and explosives by using 2-mercaptoethanol controlled pyramid Ag–iron nanostructure embedded graphene oxide platform. Photonics Nanostruct. Fundam. Appl. 2020, 41, 100801. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Zhang, L.; Wu, W. Nanocellulose-based surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydr. Polym. 2020, 248, 116766. [Google Scholar] [CrossRef] [PubMed]
- Moram, S.S.B.; Shaik, A.K.; Byram, C.; Hamad, S.; Soma, V.R. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag-Au alloy nanoparticles using the SERS technique. Anal. Chim. Acta 2020, 1101, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, G.; Zhang, H.; Zhou, F.; Li, Y.; Cai, W. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate’s surface modification. J. Hazard. Mater. 2017, 324, 194–202. [Google Scholar] [CrossRef]
- El Kazzy, M.; Weerakkody, J.S.; Hurot, C.; Mathey, R.; Buhot, A.; Scaramozzino, N.; Hou, Y. An overview of artificial olfaction systems with a focus on surface plasmon resonance for the analysis of volatile organic compounds. Biosensors 2021, 11, 244. [Google Scholar] [CrossRef]
- Kabir, E.; Raza, N.; Kumar, V.; Singh, J.; Tsang, Y.F.; Lim, D.K.; Szulejko, J.E.; Kim, K.-H. Recent advances in nanomaterial-based human breath analytical technology for clinical diagnosis and the way forward. Chem 2019, 5, 3020–3057. [Google Scholar] [CrossRef]
- Wei, W.; Mandin, C.; Ramalho, O. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds. Chemosphere 2018, 195, 223–235. [Google Scholar] [CrossRef]
- Lucattini, L.; Poma, G.; Covaci, A.; De Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef]
- Liu, Y.; Bé, A.G.; Or, V.W.; Alves, M.R.; Grassian, V.H.; Geiger, F.M. Challenges and opportunities in molecular-level indoor surface chemistry and physics. Cell Rep. Phys. Sci. 2020, 1, 100256. [Google Scholar] [CrossRef]
- Ault, A.P.; Grassian, V.H.; Carslaw, N.; Collins, D.B.; Destaillats, H.; Donaldson, D.J.; Farmer, D.K.; Jimenez, J.L.; McNeill, V.F.; Morrison, G.C.; et al. Indoor surface chemistry: Developing a molecular picture of reactions on indoor interfaces. Chem 2020, 6, 3203–3218. [Google Scholar] [CrossRef]
- Ghosh, C.; Singh, V.; Grandy, J.; Pawliszyn, J. Recent advances in breath analysis to track human health by new enrichment technologies. J. Sep. Sci. 2020, 43, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Gomez, A.; Rubio, S. Recent advances in environmental analysis. Anal. Chem. 2011, 83, 4579–4613. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lu, J.; Wang, J.; Zou, Y.; Liu, T.; Zhang, Y.; Liu, G.; Tian, Z. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 234, 118250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Zhu, Q.; Ji, W.; Zhao, S. SERS based immunochromatographic assay for rapid and quantitative determination of bisphenol A. Vib. Spectrosc. 2021, 113, 103225. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, R.; Liao, S.; Miao, Y.; Zhang, B.; Wang, F.; Yang, H. In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive SERS detection of bisphenol A. Appl. Surf. Sci. 2018, 457, 323–331. [Google Scholar] [CrossRef]
- Roschi, E.; Gellini, C.; Ricci, M.; Sanchez-Cortes, S.; Focardi, C.; Neri, B.; Otero, J.C.; Lopez-Tocon, I.; Smulevich, G.; Becucci, M. Surface-enhanced Raman spectroscopy for bisphenols detection: Toward a better understanding of the analyte-nanosystem interactions. Nanomaterials 2021, 11, 881. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Li, F.; Zhou, Y.; Hu, X.; Xu, T.; Xu, W. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5277–5285. [Google Scholar] [CrossRef]
- Li, J.; Hu, X.; Zhou, Y.; Zhang, L.; Ge, Z.; Wang, X.; Xu, W. β-Cyclodextrin-stabilized Au nanoparticles for the detection of butyl benzyl phthalate. ACS Appl. Nano Mater. 2019, 2, 2743–2751. [Google Scholar] [CrossRef]
- Cao, W.; Luo, Y.; Li, J.; Qian, A.; Wang, Q.; Wang, X.; Duan, L.; Wu, Y.; Han, C. Detection of benzo[a]pyrene with silver nanorod substrate in river water and soil based on surface-enhanced Raman scattering. Results Chem. 2021, 3, 100126. [Google Scholar] [CrossRef]
- Wang, F.; Du, D.; Liu, S.; Wang, L.; Jiao, T.; Xu, Z.; Wang, H. Revealing the hemispherical shielding effect of SiO2@Ag composite nanospheres to improve the surface enhanced Raman scattering performance. Nanomaterials 2021, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Li, M.; Ge, Z.; Zhang, X.; Luan, L.; Li, P.; Xu, W. Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119131. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Zeng, Y.; Shen, A.-G.; Hu, J.-M. A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles. Anal. Methods 2018, 10, 5622–5628. [Google Scholar] [CrossRef]
- Rong, Y.; Ali, S.; Ouyang, Q.; Wang, L.; Li, H.; Chen, Q. Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food. J. Food Compos. Anal. 2021, 100, 103929. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, Q.; Zeng, X.; Liu, Q.; Hou, X.; Tian, Y.; Wu, L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta 2018, 187, 13–18. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Ge, Z.; Zhang, L.; Zhou, Y.; Li, J.; Bu, L.; Wu, H.; Li, P.; Xu, W. Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst 2019, 144, 3861–3869. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Li, Y.-T.; Li, X.-J.; Zhang, L.; Kouadio Fodjo, E.; Han, S. Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers. Chem. Eng. J. 2020, 402, 125179. [Google Scholar] [CrossRef]
- Hong, P.; Li, W.; Li, J. Applications of aptasensors in clinical diagnostics. Sensors 2012, 12, 1181–1193. [Google Scholar] [CrossRef]
- Rajabnejad, S.-H.; Badibostan, H.; Verdian, A.; Karimi, G.R.; Fooladi, E.; Feizy, J. Aptasensors as promising new tools in bisphenol A detection—An invisible pollution in food and environment. Microchem. J. 2020, 155, 104722. [Google Scholar] [CrossRef]
- Liu, M.; Khan, A.; Wang, Z.; Liu, Y.; Yang, G.; Deng, Y.; He, N. Aptasensors for pesticide detection. Biosens. Bioelectron. 2019, 130, 174–184. [Google Scholar] [CrossRef]
- Phopin, K.; Tantimongcolwat, T. Pesticide aptasensors-state of the art and perspectives. Sensors 2020, 20, 6809. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, C.; Chen, Y.; Kong, F.; Xu, Z. Detection of dibutyl phthalate in food samples by fluorescence ratio immunosensor based on dual-emission carbon quantum dot labelled aptamers. Food Agric. Immunol. 2020, 31, 813–826. [Google Scholar] [CrossRef]
- Allsop, T.D.P.; Neal, R.; Wang, C.; Nagel, D.A.; Hine, A.V.; Culverhouse, P.; Castanon, A.J.D.; Webb, D.J.; Scarano, S.; Minunni, M. An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosens. Bioelectron. 2019, 135, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Yin, H.; Liu, L.; Xu, L.; Ma, W.; Xu, C. Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A. ACS Appl. Mater. Interfaces 2014, 6, 364–369. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, S.K.; Kim, M.J.; Lee, S.W. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem. 2019, 287, 205–213. [Google Scholar] [CrossRef]
- Lim, H.J.; Kim, A.R.; Yoon, M.Y.; You, Y.; Chua, B.; Son, A. Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate. Biosens. Bioelectron. 2018, 121, 1–9. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, X.; Hou, J.; Yuan, Q.; Li, Y.; Chen, S. Selection of aptamers specific for DEHP based on ssDNA library immobilized SELEX and development of electrochemical impedance spectroscopy aptasensor. Molecules 2020, 25, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens. Bioelectron. 2016, 86, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, J.; Meng, Z.; Ling, R.; Ren, H.; Qin, W.; Wu, Z.; Shao, N. Glutathione disulfide as a reducing, capping, and mass-separating agent for the synthesis and enrichment of gold nanoclusters. Nanomaterials 2021, 11, 2258. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hu, S.; Wu, Y.; Deng, D.; Luo, Y.; Chen, Z. Ultrasensitive biosensor with hyperbolic metamaterials composed of silver and zinc oxide. Nanomaterials 2021, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Novoselova, I.P.; Neusch, A.; Brand, J.-S.; Otten, M.; Safari, M.R.; Bartels, N.; Karg, M.; Farle, M.; Wiedwald, U.; Monzel, C. Magnetic nanoprobes for spatio-mechanical manipulation in single cells. Nanomaterials 2021, 11, 2267. [Google Scholar] [CrossRef]
- Wang, M.; Tsukamoto, M.; Sergeyev, V.G.; Zinchenko, A. Fluorescent nanoparticles synthesized from DNA, RNA, and nucleotides. Nanomaterials 2021, 11, 2265. [Google Scholar] [CrossRef] [PubMed]
- Limosani, F.; Bauer, E.M.; Cecchetti, D.; Biagioni, S.; Orlando, V.; Pizzoferrato, R.; Prosposito, P.; Carbone, M. Top-down N-doped carbon quantum dots for multiple purposes: Heavy metal detection and intracellular fluorescence. Nanomaterials 2021, 11, 2249. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Garza, J.T.; Cote, G.L. A SERS aptasensor for sensitive and selective detection of bis(2-ethylhexyl) phthalate. RSC Adv 2019, 9, 2618–2625. [Google Scholar] [CrossRef] [Green Version]
- Wieduwilt, F.; Lenth, C.; Ctistis, G.; Plachetka, U.; Moller, M.; Wackerbarth, H. Evaluation of an on-site surface enhanced Raman scattering sensor for benzotriazole. Sci. Rep. 2020, 10, 8260. [Google Scholar] [CrossRef]
- Yu, Z.; Grasso, M.F.; Sorensen, H.H.; Zhang, P. Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by beta-cyclodextrin-modified gold nanoparticles. Mikrochim. Acta 2019, 186, 391. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Li, M.; Guo, X.; Wu, Y.; Ying, Y.; Wen, Y.; Yang, H. Raman rapid detection of environmental hormone. Sens. Actuators B Chem. 2018, 262, 44–49. [Google Scholar] [CrossRef]
- Wu, M.-C.; Lin, M.-P.; Lin, T.-H.; Su, W.-F. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection. Jpn. J. Appl. Phys. 2018, 57, 04FM07. [Google Scholar] [CrossRef]
- Tijunelyte, I.; Betelu, S.; Moreau, J.; Ignatiadis, I.; Berho, C.; Lidgi-Guigui, N.; Guenin, E.; David, C.; Vergnole, S.; Rinnert, E.; et al. Diazonium salt-based surface-enhanced Raman spectroscopy nanosensor: Detection and quantitation of aromatic hydrocarbons in water samples. Sensors 2017, 17, 1198. [Google Scholar] [CrossRef]
- Shi, X.; Yan, X.; Zhang, X.; Ma, L.; Zhang, X.; Wang, C.; Ma, J. Ultrasensitive Detection of polycyclic aromatic hydrocarbons (PAHs) in water using three-dimensional SERS substrate based on porous material and pH 13 gold nanoparticles. J. Ocean Univ. China 2019, 18, 1523–1531. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, C.; Shao, H. Thioctic acid-modified silver nanoplates on copper foil for low interference detection of fluoranthene by surface-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 2020, 3, 1800–1807. [Google Scholar] [CrossRef]
- Jiang, X.; Lai, Y.; Wang, W.; Jiang, W.; Zhan, J. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer. Talanta 2013, 116, 14–17. [Google Scholar] [CrossRef]
- Haruna, K.; Saleh, T.A.; Hossain, M.K.; Al-Saadi, A.A. Hydroxylamine reduced silver colloid for naphthalene and phenanthrene detection using surface-enhanced Raman spectroscopy. Chem. Eng. J. 2016, 304, 141–148. [Google Scholar] [CrossRef]
- Gu, X.; Tian, S.; Zhou, Q.; Adkins, J.; Gu, Z.; Li, X.; Zheng, J. SERS detection of polycyclic aromatic hydrocarbons on a bowl-shaped silver cavity substrate. RSC Adv. 2013, 3, 25989–25996. [Google Scholar] [CrossRef]
- Gong, X.; Liao, X.; Li, Y.; Cao, H.; Zhao, Y.; Li, H.; Cassidy, D.P. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Analyst 2019, 144, 6698–6705. [Google Scholar] [CrossRef] [PubMed]
Plasmonic Structures | Optical Sensors | SVOCs | Limit of Detection | Reference |
---|---|---|---|---|
Ag and Au probes | SERS | 2-naphthalenethiol | 0.1 ppb | [34] |
Ultrathin tin oxide layer-wrapped AuNPs | SERS | phenyl phosphonic acid | [35] | |
GO-anisotropic noble metal hybrid systems | SERS | PCBs | 3.4 × 10−6 M | [38] |
Urchin-like Au-Ag crystals | SERS | HCH pesticides | >1.5 ppb | [40] |
AuNPs | SERS | BZT | [44] | |
Ag nanoplate-assembled film | SERS | 3,3′,4,4′-tetrachlorobiphenyl | 10−6 M | [47] |
AgNPs | SERS | 16 typical polycyclic aromatic hydrocarbons | 100–0.1 μg/L | [61] |
AuNPs | SERS | BPA | 0.1 ng/mL | [62] |
AgNPs | SERS | BPA | 5 × 10−8 M | [63] |
AgNPs | SERS | bisphenol A, B, and S | 10−7 M | [64] |
AuNPs | SERS | BBP | 1.3 mg/kg | [65] |
AuNPs | SERS | BBP | 0.01 μM | [66] |
Ag nanorods | SERS | BaP | 1 ppm | [67] |
Au nanospheres@Ag nanocubes | SERS | BBP | 10−9 M | [69] |
Au@AgNPs | SERS | BPA | 2.8 pg/mL | [70] |
AuNP-decorated up-conversion nanoparticles | SERS | dibutyl phthalate | 0.0108 ng/mL | [71] |
Graphene monolayer-coated AgNPs | SERS | BPA | 1 μg/L | [72] |
Bimetallic plasmonic Au@Ag nanocuboids | SERS | phthalate plasticizers | 10−9 M | [73] |
AuNP-coated MIP template | SERS | phthalate plasticizers | 10−10 M | [74] |
Au nano-antennae fabricated optical fibers | Coupled localized SPR | BPA | 330 ± 70 aM | [80] |
Asymmetric plasmonic aptasensors | UV-Vis | BPA | 0.008 ng/mL | [81] |
AuNPs-based colorimetric aptasensors | Colorimetric | BPA | 1 pg/mL | [82] |
AuNPs-sensitized ZnO | SPR | BPA | 0.5 nmol/L | [85] |
Silica-coated Ag nanoclusters | SERS | DEHP | 8 pM | [91] |
Gold layer-coated SiO2 nanostructured pillars | SERS | benzotriazole | 17.6 µg/L | [92] |
AuNPs | SERS | pyrene | 0.4 nM | [93] |
anthracene | 4.4 nM | |||
Au@Ag@ hexakisphosphate /1-dodecanethiol | SERS | diethylhexyl phthalate | 10−8 M | [94] |
Ag/SiO2 | SERS | DEHP | 100 ppm | [95] |
BBP | ||||
dibutyl phthalate | ||||
Au nanostructures | SERS | BaP | 0.026 mg/L | [96] |
fluoranthene | 0.064 mg/L | |||
naphthalene | 3.94 mg/L | |||
Three-dimensional SERS substrates based on porous material and pH 13 AuNPs | SERS | phenanthrene | 8.3 × 10−10 M | [97] |
pyrene | 2.1 × 10−10 M | |||
BaP | 3.8 × 10−10 M | |||
benzo(k)fluoranthene | 1.7 × 10−10 M | |||
Thioctic acid-modified Ag nanoplates on Cu foils | fluoranthene | 0.1 ng/mL–0.1 mg/mL | [98] | |
Alkanethiol-Ag(Au) | Raman | polybrominated diphenyl ethers | 1.2 × 102 μg/L | [99] |
Ag colloids | SERS | naphthalene | 10−12 M | [100] |
phenanthrene | 10−10 M | |||
Bowl-shaped Ag | SERS | anthracene | 8 nM | [101] |
pyrene | 40 nM | |||
Au-colloid substrates | SERS | naphthalene | 1.38 μg/L | [102] |
phenanthrene | 0.23 μg/L | |||
pyrene | 0.45 μg/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ly, N.H.; Son, S.J.; Jang, S.; Lee, C.; Lee, J.I.; Joo, S.-W. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. Nanomaterials 2021, 11, 2619. https://doi.org/10.3390/nano11102619
Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo S-W. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. Nanomaterials. 2021; 11(10):2619. https://doi.org/10.3390/nano11102619
Chicago/Turabian StyleLy, Nguyễn Hoàng, Sang Jun Son, Soonmin Jang, Cheolmin Lee, Jung Il Lee, and Sang-Woo Joo. 2021. "Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures" Nanomaterials 11, no. 10: 2619. https://doi.org/10.3390/nano11102619
APA StyleLy, N. H., Son, S. J., Jang, S., Lee, C., Lee, J. I., & Joo, S. -W. (2021). Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. Nanomaterials, 11(10), 2619. https://doi.org/10.3390/nano11102619