Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Au@Ag-DNFs/Si Substrate
2.2. Characterization
2.3. SERS Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
λ = wavelength of the laser used | 532 nm | |
NA = numerical aperture | 0.90 | |
ρ = density of analyte molecule | R6G: 1.26 g/cm3 | 4-MBA: 1.49 g/cm3 |
Molecular weight | R6G: 479 g/mole | 4-MBA: 154 g/mole |
Area of the sample | 9 cm2 | |
Laser spot diameter | 7.21 × 10−5 cm | |
Laser focal depth | 6.14 × 10−4 cm | |
Laser focal volume | 6.3× 10−12 cm3 |
Appendix C
Raman Molecule | R6G | 4-MBA |
NNOR | 9.98 × 109 | 3.67 × 1010 |
NSERS | 2.73 × 106 | |
NNOR/NSERS | 3.65 × 103 | 1.34 × 104 |
References
- Freeman, R.G.; Hommer, M.B.; Grabar, K.C.; Jackson, M.A.; Natan, M.J. Ag-Clad Au Nanoparticles: Novel Aggregation, Optical, and Surface-Enhanced Raman Scattering Properties. J. Phys. Chem. 1996, 100, 718–724. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; Sanchez-Cortes, S.; García-Ramos, J.V.; Morcillo, G. Mixed Silver/Gold Colloids: A Study of Their Formation, Morphology, and Surface-Enhanced Raman Activity. Langmuir 2000, 16, 9722–9728. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Pham, X.-H.; Lee, M.; Shim, S.; Jeong, S.; Kim, H.-M.; Hahm, E.; Lee, S.H.; Lee, Y.-S.; Jeong, D.H.; Jun, B.-H. Highly Sensitive and Reliable SERS Probes Based on Nanogap Control of a Au–Ag Alloy on Silica Nanoparticles. RSC Adv. 2017, 7, 7015–7021. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-H.; Wang, G.-A.; Ling, T.-K.; Wang, T.-J.; Chiu, P.; Chou Chau, Y.-F.; Huang, C.-C.; Chiang, H.-P. Near Infrared Surface-Enhanced Raman Scattering Based on Star-Shaped Gold/Silver Nanoparticles and Hyperbolic Metamaterial. Sci. Rep.-UK 2017, 7, 5446. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-C.; Tsai, T.-R.; Huang, H.-L.; Shiau, C.Y.; Chiang, H.-P. SERS Study of Histamine by Using Silver Film over Nanosphere Structure. Plasmonics 2012, 7, 709–716. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Jiang, P.; Shen, J.; Wang, R.; Wang, Y.; Tu, G. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. ACS Appl. Mater. Interfaces 2020. [Google Scholar] [CrossRef]
- Huang, H.J.; Chang, H.-W.; Lin, Y.-W.; Chuang, S.-Y.; Lin, Y.-S.; Shiao, M.-H. Silicon-Based Ag Dendritic Nanoforests for Light-Assisted Bacterial Inhibition. Nanomaterials 2020, 10, 2244. [Google Scholar] [CrossRef]
- Lai, H.; Li, G.; Xu, F.; Zhang, Z. Metal–Organic Frameworks: Opportunities and Challenges for Surface-Enhanced Raman Scattering–A Review. J. Mater. Chem. C 2020, 8, 2952–2963. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Hayes, J.R.; Biener, J.; Huser, T.; Talley, C.E.; Hamza, A.V. Surface-Enhanced Raman Scattering on Nanoporous Au. Appl. Phys. Lett. 2006, 89, 053102. [Google Scholar] [CrossRef]
- Tseng, M.L.; Chang, C.M.; Cheng, B.H.; Wu, P.C.; Chung, K.S.; Hsiao, M.-K.; Huang, H.W.; Huang, D.-W.; Chiang, H.-P.; Leung, P.T.; et al. Multi-Level Surface Enhanced Raman Scattering Using AgOx Thin Film. Opt. Express OE 2013, 21, 24460–24467. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-S.; Chen, K.-Y.; Hong, S.-J.; Chen, S.-W.; Syu, W.-S.; Kuo, C.-W.; Syu, W.-Y.; Lin, T.Y.; Chiang, H.-P.; Chattopadhyay, S.; et al. The Preparation of Silver Nanoparticle Decorated Silica Nanowires on Fused Quartz as Reusable Versatile Nanostructured Surface-Enhanced Raman Scattering Substrates. Nanotechnology 2010, 21, 025502. [Google Scholar] [CrossRef]
- Lin, C.-T.; Shiao, M.-H.; Chang, M.-N.; Chu, N.; Chen, Y.-W.; Peng, Y.-H.; Liao, B.-H.; Huang, H.J.; Hsiao, C.-N.; Tseng, F.-G. A Facile Approach to Prepare Silicon-Based Pt-Ag Tubular Dendritic Nano-Forests (TDNFs) for Solar-Light-Enhanced Methanol Oxidation Reaction. Nanoscale Res. Lett. 2015, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.J.; Chiang, Y.-C.; Hsu, C.-H.; Chen, J.-J.; Shiao, M.-H.; Yeh, C.-C.; Huang, S.-L.; Lin, Y.-S. Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction. Sensors 2020, 20, 1293. [Google Scholar] [CrossRef] [Green Version]
- Fei Chan, Y.; Xing Zhang, C.; Long Wu, Z.; Mei Zhao, D.; Wang, W.; Jun Xu, H.; Sun, X.M. Ag Dendritic Nanostructures as Ultrastable Substrates for Surface-Enhanced Raman Scattering. Appl. Phys. Lett. 2013, 102, 183118. [Google Scholar] [CrossRef]
- Shiao, M.-H.; Lin, C.-T.; Zeng, J.-J.; Lin, Y.-S. Novel Gold Dendritic Nanoforests Combined with Titanium Nitride for Visible-Light-Enhanced Chemical Degradation. Nanomaterials 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Shiao, M.-H.; Lin, C.-T.; Huang, H.J.; Chen, P.-H.; Liao, B.-H.; Tseng, F.-G.; Lin, Y.-S. Novel Gold Dendritic Nanoflowers Deposited on Titanium Nitride for Photoelectrochemical Cells. J. Solid State Electrochem. 2018, 22, 3077–3084. [Google Scholar] [CrossRef]
- Shiao, M.-H.; Zeng, J.-J.; Huang, H.J.; Liao, B.-H.; Tang, Y.-H.; Lin, Y.-S. Growth of Gold Dendritic Nanoforests on Titanium Nitride-Coated Silicon Substrates. JoVE 2019, e59603. [Google Scholar] [CrossRef]
- Fang, J.; You, H.; Kong, P.; Yi, Y.; Song, X.; Ding, B. Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction. Cryst. Growth Des. 2007, 7, 864–867. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Kharissova, O.V.; Ortega García, B.; Peña Méndez, Y.; Fuente, I.G. de la State of the Art of Nanoforest Structures and Their Applications. RSC Adv. 2015, 5, 105507–105523. [Google Scholar] [CrossRef]
- Xu, R.; Wu, R.; Shi, Y.; Zhang, J.; Zhang, B. Ni3Se2 Nanoforest/Ni Foam as a Hydrophilic, Metallic, and Self-Supported Bifunctional Electrocatalyst for Both H2 and O2 Generations. Nano Energy 2016, 24, 103–110. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.W.; Ahn, H.; Kim, J.-H.; Han, S.W. Plasmon-Enhanced Electrocatalysis from Synergistic Hybrids of Noble Metal Nanocrystals. Curr. Opin. Electrochem. 2017, 4, 11–17. [Google Scholar] [CrossRef]
- Ko, S.H.; Lee, D.; Kang, H.W.; Nam, K.H.; Yeo, J.Y.; Hong, S.J.; Grigoropoulos, C.P.; Sung, H.J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Firdoz, S.; Yap, E.Y.-X.; Li, L.; Lu, X. Hierarchically Structured MnO2 Nanowires Supported on Hollow Ni Dendrites for High-Performance Supercapacitors. Nanoscale 2013, 5, 4379–4387. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Wang, Q.; Wang, J.; Wang, J.; Guo, L.; Tadesse Gebremariam, T. Plasmonic-Enhanced Catalytic Activity of Methanol Oxidation on Au–Graphene–Cu Nanosandwiches. Nanoscale 2019, 11, 8812–8824. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, K.; Yang, Z.; Xie, S.; Chen, Y.; Liu, Z.; Liu, Y.; Zhao, J.; Liu, Y.; Liu, C. Tunable 3D Hierarchical Ni 3 S 2 Superstructures as Efficient and Stable Bifunctional Electrocatalysts for Both H 2 and O 2 Generation. J. Mater. Chem. A 2018, 6, 4485–4493. [Google Scholar] [CrossRef]
- Choudhury, B.D.; Lin, C.; Shawon, S.M.A.Z.; Soliz-Martinez, J.; Huq, H.; Uddin, M.J. A Photoanode with Hierarchical Nanoforest TiO 2 Structure and Silver Plasmonic Nanoparticles for Flexible Dye Sensitized Solar Cell. Sci. Rep. 2021, 11, 7552. [Google Scholar] [CrossRef] [PubMed]
- Shiao, M.-H.; Wu, T.; Huang, H.J.; Peng, C.-Y.; Lin, Y.-S.; Lai, T.-Y.; Lin, Y.-W. Dendritic Forest-Like Ag Nanostructures Prepared Using Fluoride-Assisted Galvanic Replacement Reaction for SERS Applications. Nanomaterials 2021, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Salgueiriño-Maceira, V.; Caruso, F.; Liz-Marzán, L.M. Coated Colloids with Tailored Optical Properties. J. Phys. Chem. B 2003, 107, 10990–10994. [Google Scholar] [CrossRef]
- He, J.; Wei, Q.; Wang, S.; Hua, S.; Zhou, M. Bioinspired Protein Corona Strategy Enhanced Biocompatibility of Ag-Hybrid Hollow Au Nanoshells for Surface-Enhanced Raman Scattering Imaging and on-Demand Activation Tumor-Phototherapy. Biomaterials 2021, 271, 120734. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Two-Dimensional Au@Ag Nanodot Array for Sensing Dual-Fungicides in Fruit Juices with Surface-Enhanced Raman Spectroscopy Technique. Food Chem. 2020, 310, 125923. [Google Scholar] [CrossRef]
- Guo, Y.; Li, D.; Zheng, S.; Xu, N.; Deng, W. Utilizing Ag–Au Core-Satellite Structures for Colorimetric and Surface-Enhanced Raman Scattering Dual-Sensing of Cu (II). Biosens. Bioelectron. 2020, 159, 112192. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, J.; Kawamura, G.; Nogami, M. Preparation of Au–Ag, Ag–Au Core–Shell Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering. Scr. Mater. 2008, 58, 862–865. [Google Scholar] [CrossRef]
- Reed, J.C.; Zhu, H.; Zhu, A.Y.; Li, C.; Cubukcu, E. Graphene-Enabled Silver Nanoantenna Sensors. Nano Lett. 2012, 12, 4090–4094. [Google Scholar] [CrossRef]
- Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C.M.; Du, H.; Sukhishvili, S. Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation. Anal. Chem. 2011, 83, 5873–5880. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, W.; Tao, Z.; Xiong, P.; Qu, Y.; Zhu, Y. Highly Sensitive Surface-Enhanced Raman Scattering Based on Multi-Dimensional Plasmonic Coupling in Au–Graphene–Ag Hybrids. Chem. Commun. 2014, 51, 866–869. [Google Scholar] [CrossRef]
- Liu, A.; Xu, T.; Tang, J.; Wu, H.; Zhao, T.; Tang, W. Sandwich-Structured Ag/Graphene/Au Hybrid for Surface-Enhanced Raman Scattering. Electrochim. Acta 2014, 119, 43–48. [Google Scholar] [CrossRef]
- Yan, Y.; Radu, A.I.; Rao, W.; Wang, H.; Chen, G.; Weber, K.; Wang, D.; Cialla-May, D.; Popp, J.; Schaaf, P. Mesoscopically Bi-Continuous Ag–Au Hybrid Nanosponges with Tunable Plasmon Resonances as Bottom-Up Substrates for Surface-Enhanced Raman Spectroscopy. Chem. Mater. 2016, 28, 7673–7682. [Google Scholar] [CrossRef]
- Shinki; Sarkar, S. Au0.5Ag0.5 Alloy Nanolayer Deposited on Pyramidal Si Arrays as Substrates for Surface-Enhanced Raman Spectroscopy. ACS Appl. Nano Mater. 2020, 3, 7088–7095. [Google Scholar] [CrossRef]
- de Barros, A.; Shimizu, F.M.; de Oliveira, C.S.; Sigoli, F.A.; dos Santos, D.P.; Mazali, I.O. Dynamic Behavior of Surface-Enhanced Raman Spectra for Rhodamine 6G Interacting with Gold Nanorods: Implication for Analyses under Wet versus Dry Conditions. ACS Appl. Nano Mater. 2020, 3, 8138–8147. [Google Scholar] [CrossRef]
- Scherdel, C.; Reichenauer, G.; Wiener, M. Relationship between Pore Volumes and Surface Areas Derived from the Evaluation of N2-Sorption Data by DR-, BET- and t-Plot. Microporous Mesoporous Mater. 2010, 132, 572–575. [Google Scholar] [CrossRef]
- Carraro, C.; Maboudian, R.; Magagnin, L. Metallization and Nanostructuring of Semiconductor Surfaces by Galvanic Displacement Processes. Surf. Sci. Rep. 2007, 62, 499–525. [Google Scholar] [CrossRef]
- Emsley, J. The Elements; Oxford: New York, NY, USA, 1998; ISBN 978-0-19-855818-7. [Google Scholar]
- Godipurge, S.S.; Yallappa, S.; Biradar, N.J.; Biradar, J.S.; Dhananjaya, B.L.; Hegde, G.; Jagadish, K.; Hegde, G. A Facile and Green Strategy for the Synthesis of Au, Ag and Au–Ag Alloy Nanoparticles Using Aerial Parts of R. Hypocrateriformis Extract and Their Biological Evaluation. Enzyme Microb. Technol. 2016, 95, 174–184. [Google Scholar] [CrossRef]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A. Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far Infrared. Appl. Opt. AO 1983, 22, 1099–1119. [Google Scholar] [CrossRef]
- Han, H.; Fang, Y.; Li, Z.; Xu, H. Tunable Surface Plasma Resonance Frequency in Ag Core/Au Shell Nanoparticles System Prepared by Laser Ablation. Appl. Phys. Lett. 2008, 92, 023116. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.J.; Wu, J.C.-S.; Chiang, H.-P.; Chou Chau, Y.-F.; Lin, Y.-S.; Wang, Y.H.; Chen, P.-J. Review of Experimental Setups for Plasmonic Photocatalytic Reactions. Catalysts 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736–3827. [Google Scholar] [CrossRef]
Name | INOR | ISERS | EFs |
---|---|---|---|
R6G | 186 | - | - |
Sample A | - | 42,652 | 8.37 × 105 |
Sample B | - | 101,932 | 2.00 × 106 |
Sample C | - | 135,499 | 2.66 × 106 |
Sample D | - | 184,708 | 3.62 × 106 |
Sample E | - | 58,685 | 1.15 × 106 |
4-MBA | 142 | - | - |
Sample A | - | 25,557 | 2.41 × 106 |
Sample B | - | 52,668 | 4.97 × 106 |
Sample C | - | 153,544 | 1.45 × 107 |
Sample D | - | 186,475 | 1.76 × 107 |
Sample E | - | 100,107 | 9.45 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.J.; Shiao, M.-H.; Lin, Y.-W.; Lin, B.-J.; Su, J.; Lin, Y.-S.; Chang, H.-W. Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. Nanomaterials 2021, 11, 1736. https://doi.org/10.3390/nano11071736
Huang HJ, Shiao M-H, Lin Y-W, Lin B-J, Su J, Lin Y-S, Chang H-W. Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. Nanomaterials. 2021; 11(7):1736. https://doi.org/10.3390/nano11071736
Chicago/Turabian StyleHuang, Hung Ji, Ming-Hua Shiao, Yang-Wei Lin, Bei-Ju Lin, James Su, Yung-Sheng Lin, and Han-Wei Chang. 2021. "Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing" Nanomaterials 11, no. 7: 1736. https://doi.org/10.3390/nano11071736
APA StyleHuang, H. J., Shiao, M. -H., Lin, Y. -W., Lin, B. -J., Su, J., Lin, Y. -S., & Chang, H. -W. (2021). Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing. Nanomaterials, 11(7), 1736. https://doi.org/10.3390/nano11071736