High Efficiency Focusing and Vortex Generator Based on Polarization-Insensitive Gallium Nitride Metasurface
Abstract
:1. Introduction
2. Structure Design
3. Theory and Results Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bawart, M.; Jesacher, A.; Zelger, P.; Bernet, S.; Ritsch-Marte, M. Modified Alvarez lens for high-speed focusing. Opt. Express 2017, 25, 29847–29855. [Google Scholar] [CrossRef]
- Shaw, B.H.; Steinke, S.; Van Tilborg, J.; Leemans, W.P. Reflectance characterization of tape-based plasma mirrors. Phys. Plasmas 2016, 23, 63118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, J.; Chang, G.; Shi, Z.; Li, M.; Ren, Y.; Zhang, X.; Yi, F.; Liu, P.; Sheng, W. Large-aperture prism-array lens for high-energy X-ray focusing. J. Synchrotron Radiat. 2016, 23, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, E.M.; Dunford, R.W.; Kanter, E.P.; Gao, Y.; Moon, S.; Walko, D.A.; Zhang, X. Pink-beam focusing with a one-dimensional compound refractive lens. J. Synchrotron Radiat. 2016, 23, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wu, C.; Wei, Z.; Fan, Y.; Li, H. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase. Opt. Mater. Express 2016, 6, 3940–3945. [Google Scholar] [CrossRef]
- Qi, M.Q.; Tang, W.X.; Cui, T.J. A broadband bessel beam launcher using metamaterial lens. Sci. Rep. 2015, 5, 1–11. [Google Scholar]
- Yan, M.; Sun, Z.; Wu, B.; Cheng, P.; Xu, B. Reflective Focusing Based on Few-Layer Gradient Metasurface Element Array. Front. Phys. 2020, 8, 46. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Dong, X.; Sun, H.; Gu, C.; Li, Z.; Chen, X.; Xu, B. Generation of ultra-wideband multi-mode vortex waves based on monolayer reflective metasurface. Prog. Electromagn. Res. M 2019, 80, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Bi, F.; Ba, Z.; Wang, X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt. Express 2018, 26, 25693–25705. [Google Scholar] [CrossRef]
- Danila, O.; Manaila-Maximean, D. Bifunctional metamaterials using spatial phase gradient architectures: Generalized reflection and refraction considerations. Materials 2021, 14, 2201. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.Y.; Xu, B.J.; Sun, Z.C.; Wu, Z.D.; Wu, B.R. Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure. Chin. Phys. Lett. 2020, 37, 67801. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, M.; Eric Mupona, T.; Xu, B. Control Electromagnetic Waves Based on Multi-Layered Transparent Metasurface. Front. Phys. 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Dănilă, O.; Mănăilă-Maximean, D.; Bărar, A.; Loiko, V.A. Non-layered gold-silicon and all-silicon frequency-selective metasurfaces for potential mid-infrared sensing applications. Sensors 2021, 21, 5600. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V.; Moiseyev, N. Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations. J. Phys. A 2014, 47, 315203. [Google Scholar] [CrossRef]
- Kruk, S.; Hopkins, B.; Kravchenko, I.I.; Miroshnichenko, A.; Neshev, D.N.; Kivshar, Y.S. Invited Article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016, 1, 30801. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.G. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 2015, 58, 1–18. [Google Scholar] [CrossRef]
- Yuan, G.; Rogers, E.T.F.; Zheludev, N.I. “Plasmonics” in free space: Observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light Sci. Appl. 2019, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, M.; Ma, X.; Li, X.; Guo, Y.; Luo, X. Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 2017, 5, 4361–4378. [Google Scholar] [CrossRef]
- Sun, Z.C.; Yan, M.Y.; Xu, B.J. Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial. Chin. Phys. B 2020, 29, 104101. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, M.; Xu, B. Formation of orbital angular momentum and focused beams based on chiral double-helical metamaterials. Opt. Mater. 2020, 107, 109962. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef] [Green Version]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photonics Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Chen, M.; Mazilu, M.; Arita, Y.; Wright, E.M.; Dholakia, K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 2013, 38, 4919–4922. [Google Scholar] [CrossRef]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Xu, B.; Wang, X.; Ying, H. Generation of a polarization insensitive Airy beam using an all-dielectric metasurface. Opt. Mater. Express 2021, 11, 842–847. [Google Scholar] [CrossRef]
- Wu, B.; Xu, B.; Li, Z.; Cheng, P.; Xue, X.; Sun, Z.; Wang, J.; Wang, Y.; Zhi, Y.; Lin, L.; et al. Metalens and vortex generator based on a planar optics metasurface. Opt. Mater. Express 2021, 11, 1383–1389. [Google Scholar] [CrossRef]
- Vacek, P.; Frentrup, M.; Lee, L.Y.; Massabuau, F.C.P.; Kappers, M.J.; Wallis, D.J.; Gröger, R.; Oliver, R.A. Defect structures in (001) zincblende GaN/3C-SiC nucleation layers. J. Appl. Phys. 2021, 129, 155306. [Google Scholar] [CrossRef]
- Lee, S.B.; Yoo, S.J.; Kim, K.; Kim, Y.S.; Kim, Y.M.; Kim, J.G.; Han, H.N. Stabilization of a Ga-adlayer structure with the zincblende stacking sequence in the GaN(0 0 0 −1) surface at the nanoscale. Nanoscale 2017, 9, 2596–2602. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Schlickriede, C.; Wang, D.; Liu, H.; Xiang, Y.; Zentgraf, T.; Zhang, S. Manipulation of vector beam polarization with geometric metasurfaces. Opt. Express 2017, 25, 14300–14307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Feng, Q.; Xue, H.; Liu, Y.; Shao, Q.; Xi, R.; Li, L. A Transmission Metasurface Design for OAM Beam Generation and Beam Scanning. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; Volmue 2, pp. 1–3. [Google Scholar]
- Devlin, R.C.; Ambrosio, A.; Wintz, D.; Oscurato, S.L.; Zhu, A.Y.; Khorasaninejad, M.; Oh, J.; Maddalena, P.; Capasso, F. Spin-to-orbital angular momentum conversion in dielectric metasurfaces: Erratum. Opt. Express 2017, 25, 4239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yuan, Y.; Zhang, D.; Ding, X.; Ratni, B.; Burokur, S.N.; Lu, M.; Tang, K.; Wu, Q. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express 2018, 26, 1351–1360. [Google Scholar] [CrossRef]
- Vaity, P.; Rusch, L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 2015, 40, 597–600. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, Y.; Zhou, J.; Liu, Y.; Luo, H.; Wen, S.; Fan, D. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, W.; Gao, J.; Yang, X. Generating Focused 3D Perfect Vortex Beams By Plasmonic Metasurfaces. Adv. Opt. Mater. 2018, 6, 1701228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Xu, B.; Wu, B.; Wang, X.; Ying, H. High Efficiency Focusing and Vortex Generator Based on Polarization-Insensitive Gallium Nitride Metasurface. Nanomaterials 2021, 11, 2638. https://doi.org/10.3390/nano11102638
Sun Z, Xu B, Wu B, Wang X, Ying H. High Efficiency Focusing and Vortex Generator Based on Polarization-Insensitive Gallium Nitride Metasurface. Nanomaterials. 2021; 11(10):2638. https://doi.org/10.3390/nano11102638
Chicago/Turabian StyleSun, Zhitong, Bijun Xu, Bairui Wu, Xiaogang Wang, and Hao Ying. 2021. "High Efficiency Focusing and Vortex Generator Based on Polarization-Insensitive Gallium Nitride Metasurface" Nanomaterials 11, no. 10: 2638. https://doi.org/10.3390/nano11102638
APA StyleSun, Z., Xu, B., Wu, B., Wang, X., & Ying, H. (2021). High Efficiency Focusing and Vortex Generator Based on Polarization-Insensitive Gallium Nitride Metasurface. Nanomaterials, 11(10), 2638. https://doi.org/10.3390/nano11102638