Group Velocity Modulation and Light Field Focusing of the Edge States in Chirped Valley Graphene Plasmonic Metamaterials
Abstract
:1. Introduction
2. Calculation Methods and Models
3. Results and Discussion
3.1. Topological Phase Transition of VGPMs
3.2. Valley Topological Edge States of VGPMs
3.3. Group Velocity Modification and Light Field Focusing of the Valley Topological Edge States in Chirped VGPMs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rycerz, A.; Tworzydlo, J.; Beenakker, C.W.J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406. [Google Scholar] [CrossRef] [Green Version]
- Gorbachev, R.V.; Song, J.C.W.; Yu, G.L.; Kretinin, A.V.; Withers, F.; Cao, Y.; Mishchenko, A.; Grigorieva, I.V.; Novoselov, K.S.; Levitov, L.S.; et al. Detecting topological currents in graphene superlattices. Science 2014, 346, 448–451. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.D.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350. [Google Scholar] [CrossRef]
- Lu, J.Y.; Qiu, C.Y.; Ye, L.P.; Fan, X.Y.; Ke, M.Z.; Zhang, F.; Liu, Z.Y. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 2017, 13, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Huo, S.Y.; Chen, J.J.; Huang, H.B.; Huang, G.L. Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins. Sci. Rep. 2017, 7, 10335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.Y.; Qiu, C.Y.; Deng, W.Y.; Huang, X.Q.; Li, F.; Zhang, F.; Chen, S.Q.; Liu, Z.Y. Valley Topological Phases in Bilayer Sonic Crystals. Phys. Rev. Lett. 2018, 120, 116802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.W.; Tian, Y.; Wang, Y.H.; Gao, S.X.; Cheng, Y.; Liu, X.J.; Christensen, J. Directional Acoustic Antennas Based on Valley-Hall Topological Insulators. Adv. Mater. 2018, 30, 1803229. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Lu, J.Y.; Li, F.; Deng, W.Y.; Huang, X.Q.; Ma, J.H.; Liu, Z.Y. On-chip valley topological materials for elastic wave manipulation. Nat. Mater. 2018, 17, 993. [Google Scholar] [CrossRef]
- He, C.; Yu, S.Y.; Ge, H.; Wang, H.Q.; Tian, Y.; Zhang, H.J.; Sun, X.C.; Chen, Y.B.; Zhou, J.; Lu, M.H.; et al. Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states. Nat. Commun. 2018, 9, 4555. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.C.; Xiao, M.; Chan, C.T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 2019, 1, 281–294. [Google Scholar] [CrossRef]
- Tian, Z.H.; Shen, C.; Li, J.F.; Reit, E.; Bachman, H.; Socolar, J.E.S.; Cummer, S.A.; Huang, T.J. Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nat. Commun. 2020, 11, 762. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 2016, 18, 025012. [Google Scholar] [CrossRef]
- Ye, Z.L.; Sun, D.Z.; Heinz, T.F. Optical manipulation of valley pseudospin. Nat. Phys. 2017, 13, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.W.; Chen, X.D.; Zhu, H.; Wang, Y.; Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 2017, 16, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shvets, G. Scattering-free edge states between heterogeneous photonic topological insulators. Phys. Rev. B 2017, 95, 165102. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Zhao, F.L.; Chen, M.; Dong, J.W. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 2017, 96, 020202. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Yang, Z.; Gao, F.; Xue, H.; Yang, Y.; Dong, J.; Zhang, B. Valley surface-wave photonic crystal and its bulk/edge transport. Phys. Rev. B 2017, 96, 201402. [Google Scholar] [CrossRef]
- Gao, F.; Xue, H.; Yang, Z.; Lai, K.; Yu, Y.; Lin, X.; Chong, Y.; Shvets, G.; Zhang, B. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 2018, 14, 140. [Google Scholar] [CrossRef]
- Noh, J.; Huang, S.; Chen, K.P.; Rechtsman, M.C. Observation of Photonic Topological Valley Hall Edge States. Phys. Rev. Lett. 2018, 120, 063902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Ni, X.; Cheng, X.; Khanikaev, A.B.; Genack, A.Z. Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun. 2018, 9, 3029. [Google Scholar] [CrossRef] [Green Version]
- Shalaev, M.I.; Walasik, W.; Tsukernik, A.; Xu, Y.; Litchinitser, N.M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 2019, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- He, X.T.; Liang, E.T.; Yuan, J.J.; Qiu, H.Y.; Chen, X.D.; Zhao, F.L.; Dong, J.W. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 2019, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; He, X.T.; Dong, J.W. All-Dielectric Layered Photonic Topological Insulators. Laser Photon. Rev. 2019, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.H.; Komen, I.; Alpeggiani, F.; Kuipers, L. Nanoscale Optical Addressing of Valley Pseudospins through Transverse Optical Spin. Nano Lett. 2020, 20, 4410–4415. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.E.; Dowling, T.; Nalitov, A.V.; Yulin, A.V.; Royall, B.; Clarke, E.; Skolnick, M.S.; Shelykh, I.A.; Krizhanovskii, D.N. Optical analogue of Dresselhaus spin-orbit interaction in photonic graphene. Nat. Photonics. 2021, 15, 193–196. [Google Scholar] [CrossRef]
- Wang, Z.; Chong, Y.D.; Joannopoulos, J.D.; Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.J.; Hang, Z.H.; Dong, J.W.; Xiao, X.; Wang, H.Z.; Chan, C.T. Observation of Backscattering-Immune Chiral Electromagnetic Modes Without Time Reversal Breaking. Phys. Rev. Lett. 2011, 107, 023901. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.C.; Liu, Z.Z.; Zhang, D.S.; Xiao, J.J. Frequency dependent wave routing based on dual-band valley-Hall topological photonic crystal. New J. Phys. 2021, 23, 023029. [Google Scholar] [CrossRef]
- Cheng, S.G.; Zhang, R.Z.; Zhou, J.J.; Jiang, H.; Sun, Q.F. Perfect valley filter based on a topological phase in a disordered Sb monolayer heterostructure. Phys. Rev. B 2018, 97, 085420. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.E.; Lu, X.L.; Zhang, C.X.; Xie, H. Topological spin-valley filtering effects based on hybrid silicene-like nanoribbons. New J. Phys. 2020, 22, 053034. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285–4294. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppens, F.H.L.; Chang, D.E.; de Abajo, F.J.G. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Forsythe, C.; Jung, M.; McLeod, A.S.; Sunku, S.S.; Shao, Y.M.; Ni, G.X.; Sternbach, A.J.; Liu, S.; Edgar, J.H.; et al. Photonic crystal for graphene plasmons. Nat. Commun. 2019, 10, 4780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Zhang, X.; Garcia-Vidal, F.J.; Yuan, X.C.; Teng, J. Strong Coupling of Surface Plasmon Polaritons in Monolayer Graphene Sheet Arrays. Phys. Rev. Lett. 2012, 109, 073901. [Google Scholar] [CrossRef] [Green Version]
- Woessner, A.; Lundeberg, M.B.; Gao, Y.; Principi, A.; Alonso-Gonzaolez, P.; Carrega, M.; Watanabe, K.; Taniguchi, T.; Vignale, G.; Polini, M.; et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 2015, 14, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, H.; Xiao, X.; Jiang, Y.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Wang, F. Nanoimaging of Low-Loss Plasmonic Waveguide Modes in a Graphene Nanoribbon. Nano Lett. 2021, 21, 3106–3111. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Geng, B.S.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.G.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Rodin, A.S.; Andreev, G.O.; Bao, W.; McLeod, A.S.; Wagner, M.; Zhang, L.M.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.N.; Badioli, M.; Alonso-Gonzalez, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenovic, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, G.X.; McLeod, A.S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.W.; Sunku, S.S.; Jiang, B.Y.; Hone, J.; Dean, C.R.; et al. Fundamental limits to graphene plasmonics. Nature 2018, 557, 530. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Cai, W.; Zhang, X.; Xiang, Y.; Zhan, Y.; Geng, J.; Ren, M.; Xu, J. Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene. Sci. Rep. 2016, 6, 26796. [Google Scholar] [CrossRef] [Green Version]
- Jablan, M.; Buljan, H.; Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 2008, 104, 084314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, L.; He, H.; Huang, R.; Su, S.; Lin, Z.; Qiu, W.; Huang, B.; Kan, Q. Group Velocity Modulation and Light Field Focusing of the Edge States in Chirped Valley Graphene Plasmonic Metamaterials. Nanomaterials 2021, 11, 1808. https://doi.org/10.3390/nano11071808
Zhuo L, He H, Huang R, Su S, Lin Z, Qiu W, Huang B, Kan Q. Group Velocity Modulation and Light Field Focusing of the Edge States in Chirped Valley Graphene Plasmonic Metamaterials. Nanomaterials. 2021; 11(7):1808. https://doi.org/10.3390/nano11071808
Chicago/Turabian StyleZhuo, Liqiang, Huiru He, Ruimin Huang, Shaojian Su, Zhili Lin, Weibin Qiu, Beiju Huang, and Qiang Kan. 2021. "Group Velocity Modulation and Light Field Focusing of the Edge States in Chirped Valley Graphene Plasmonic Metamaterials" Nanomaterials 11, no. 7: 1808. https://doi.org/10.3390/nano11071808
APA StyleZhuo, L., He, H., Huang, R., Su, S., Lin, Z., Qiu, W., Huang, B., & Kan, Q. (2021). Group Velocity Modulation and Light Field Focusing of the Edge States in Chirped Valley Graphene Plasmonic Metamaterials. Nanomaterials, 11(7), 1808. https://doi.org/10.3390/nano11071808