Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Materials Characterization
2.3. Electrochemical Evaluation
3. Results
3.1. Materials Characterization
3.2. Electrochemical Measerment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senba, T. Clean Disruption of Energy and Transportation; Clean Planet Ventures: Silicon Valley, CA, USA, 2014; pp. 1–290. [Google Scholar]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef]
- Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. 2021. [Google Scholar] [CrossRef]
- Hwan, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Lu, H.; Fang, Y.; Sushko, M.L.; Cao, Y.; Ai, X.; Yang, H.; Liu, J. Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Adv. Energy Mater. 2018, 8, 1703238. [Google Scholar] [CrossRef]
- Yeo, Y.; Jung, J.-W.; Park, K.; Kim, I.-D. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries. Sci. Rep. 2015, 5, 13862. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Shao, H.; Yang, C.; Feng, X.; Han, L.; Zhou, Y.; Du, W.; Sun, X.; Xu, Z.; Zhang, X.; et al. SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries. Nanomaterials 2021, 11, 1932. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Shang, C.; Akinoglu, E.M.; Wang, X.; Zhou, G. Cu2Se Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanofibers for Efficient Sodium Storage. Nanomaterials 2020, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Kim, D.-H.; Kim, S.-H.; Lee, E.-K.; Park, S.-K.; Lee, J.-W.; Yun, Y.-S.; Choi, S.-Y.; Kang, J. Hard Carbon Anodes for Sodium-Ion Batteries. Nanomaterials 2021, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qi, S.-H.; Zhang, W.-C.; Feng, Y.-Z.; Ma, J.-M. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020, 39, 1239–1255. [Google Scholar] [CrossRef]
- Hu, R.; Fang, Y.; Liu, X.; Zhu, K.; Cao, D.; Yi, J.; Wang, G. Synthesis of SnS2 Ultrathin Nanosheets as Anode Materials for Potassium Ion Batteries. Chem. Res. Chin. Univ. 2021, 37, 311–317. [Google Scholar] [CrossRef]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2019, 32, 1903826. [Google Scholar] [CrossRef]
- Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angew. Chem. Int. Ed. 2017, 57, 626–646. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Wang, Y.; Qian, C.; Dong, Q.; Deng, C.; Jiang, D.; Shu, M.; Pan, S.; Zhang, S. Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. J. Mater. Chem. A 2020, 8, 15002–15011. [Google Scholar] [CrossRef]
- Geng, X.; Jiao, Y.; Han, Y.; Mukhopadhyay, A.; Yang, L.; Zhu, H. Freestanding Metallic 1T MoS2 with Dual Ion Diffusion Paths as High Rate Anode for Sodium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1702998. [Google Scholar] [CrossRef]
- Jung, J.-W.; Ryu, W.-H.; Yu, S.; Kim, C.; Cho, S.-H.; Kim, I.-D. Dimensional Effects of MoS2 Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. ACS Appl. Mater. Interfaces 2016, 8, 26758–26768. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.; Robles-Hernández, F.C.; Yoo, H.D. Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy 2015, 15, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Ryu, W.-H.; Jung, J.-W.; Park, K.; Kim, S.-J.; Kim, I.-D. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 2014, 6, 10975–10981. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Wang, J.; Peng, S.; Yan, W.; Ramakrishna, S. Controllable Design of MoS2 Nanosheets Grown on Nitrogen-Doped Branched TiO2/C Nanofibers: Toward Enhanced Sodium Storage Performance Induced by Pseudocapacitance Behavior. Small 2019, 16, 1904589. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Guan, M.; Wu, F.; Chen, R. Toward Rapid-Charging Sodium-Ion Batteries using Hybrid-Phase Molybdenum Sulfide Selenide-Based Anodes. Adv. Mater. 2020, 32, 2003534. [Google Scholar] [CrossRef]
- Kim, M.; Seok, H.; Selvam, N.C.S.; Cho, J.; Choi, G.H.; Nam, M.G.; Kang, S.; Kim, T.; Yoo, P.J. Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. J. Power Source 2021, 493, 229688. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H.J.; Yan, Q.; et al. A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 2011, 4, 4954–4961. [Google Scholar] [CrossRef]
- Cho, S.-H.; Jung, J.-W.; Kim, C.; Kim, I.-D. Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries. Sci. Rep. 2017, 7, 45105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brio, J.L.; Ilija, M.; Hernández, P. Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim. Acta 1995, 256, 325–338. [Google Scholar] [CrossRef]
- Müller, A.; Prasad, T.P.; Menge, R. Thermal decomposition of (NH4)2MoS4 and (NH4)2WS4 heat of formation of (NH4)2MoS4. Z. Für Anorg. Und Allg. Chem. 1972, 391, 107–112. [Google Scholar] [CrossRef]
- Wu, C.; Song, H.; Tang, C.; Du, A.; Yu, C.; Huang, Z.; Wu, M.; Zhang, H. Ultralarge interlayer distance and C,N-codoping enable superior sodium storage capabilities of MoS2 nanoonions. Chem. Eng. J. 2019, 378, 122249. [Google Scholar] [CrossRef]
- Sahu, T.S.; Mitra, S. Exfoliated MoS2 Sheets and Reduced Graphene Oxide-An Excellent and Fast Anode for Sodium-ion Battery. Sci. Rep. 2015, 5, 12571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S.A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649. [Google Scholar] [CrossRef]
- Scheuschner, N.; Gillen, R.; Staiger, M.; Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 2015, 91, 235409. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Abdelaal, M.M.; Hung, T.-C.; Mohamed, S.G.; Yang, C.-C.; Huang, H.-P.; Hung, T.-F. A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium. Nanomaterials 2021, 11, 1867. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Lu, H.; Lai, F.; Miao, Y.-E.; Liu, T. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic application. Inorg. Chem. Front. 2016, 3, 969–976. [Google Scholar] [CrossRef]
- Cai, J.; Reinhart, B.; Eng, P.; Liu, Y.; Sun, C.-J.; Zhou, H.; Ren, Y.; Meng, X. Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon 2020, 170, 430–438. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Zhang, Y.; Jin, D.; Tao, X.; Zhang, L. Sodium storage in a promising MoS2–carbon anode: Elucidating structural and interfacial transitions in the intercalation process and conversion reactions. Nanoscale 2018, 10, 11165–11175. [Google Scholar] [CrossRef]
- Prosini, P.P.; Carewska, M.; Cento, C.; Tarquini, G.; Maroni, F.; Birrozzi, A.; Nobili, F. Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries. Materials 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Chen, W.; Lv, W.; Huang, J.; Zhu, J.; Chu, J.; Yan, C.; Wu, C.; Yan, Y.; He, W.; et al. Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule 2018, 2, 2091–2104. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhou, D.; Qin, X.; Lin, K.; Kang, F.; Li, B.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosa, J.; Garcia-Garcia, F.J.; González-Elipe, A.R.; Aparicio, M. New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batterie. Nanomaterials 2021, 11, 966. [Google Scholar] [CrossRef] [PubMed]
Samples | Carbon, C (wt %) | Sulfur, S (wt %) |
---|---|---|
MoS2@CNFs | 23.6 | 29.8 |
MoS2@CNFs@ rGO | 34.3 | 20.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-H.; Kim, J.-H.; Kim, I.-G.; Park, J.-H.; Jung, J.-W.; Kim, H.-S.; Kim, I.-D. Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials 2021, 11, 2691. https://doi.org/10.3390/nano11102691
Cho S-H, Kim J-H, Kim I-G, Park J-H, Jung J-W, Kim H-S, Kim I-D. Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials. 2021; 11(10):2691. https://doi.org/10.3390/nano11102691
Chicago/Turabian StyleCho, Su-Ho, Jong-Heon Kim, Il-Gyu Kim, Jeong-Ho Park, Ji-Won Jung, Hyun-Suk Kim, and Il-Doo Kim. 2021. "Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries" Nanomaterials 11, no. 10: 2691. https://doi.org/10.3390/nano11102691
APA StyleCho, S. -H., Kim, J. -H., Kim, I. -G., Park, J. -H., Jung, J. -W., Kim, H. -S., & Kim, I. -D. (2021). Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials, 11(10), 2691. https://doi.org/10.3390/nano11102691