Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study
Abstract
:1. Introduction
2. Details of Calculations
3. Results and Discussion
3.1. Structural Properties
3.2. Electronic Properties
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Marino, S.; Sánchez, Y.; Placidi, M.; Fairbrother, A.; Espindola-Rodríguez, M.; Fontané, X.; Izquierdo-Roca, V.; López-García, J.; Calvo-Barrio, L.; Pérez-Rodríguez, A.; et al. Inside Cover: ZnSe Etching of Zn-Rich Cu2ZnSnSe4: An Oxidation Route for Improved Solar-Cell Efficiency. Chem.-A Eur. J. 2013, 19, 14738. [Google Scholar] [CrossRef]
- Neuschitzer, M.; Sanchez, Y.; Olar, T.; Thersleff, T.; Lopez-Marino, S.; Oliva, F.; Espindola-Rodriguez, M.; Xie, H.; Placidi, M.; Izquierdo-Roca, V.; et al. Complex Surface Chemistry of Kesterites: Cu/Zn Reordering after Low Temperature Postdeposition Annealing and Its Role in High Performance Devices. Chem. Mater. 2015, 27, 5279–5287. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar Cell Efficiency Tables (Version 46). Prog. Photovoltaics Res. Appl. 2015, 23, 805–812. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Gunawan, O.; Todorov, T.K.; Barkhouse, D.A.R. Prospects and Performance Limitations for Cu–Zn–Sn–S–Se Photovoltaic Technology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110432. [Google Scholar] [CrossRef] [Green Version]
- Fairbrother, A.; García-Hemme, E.; Izquierdo-Roca, V.; Fontané, X.; Pulgarín-Agudelo, F.A.; Vigil-Galán, O.; Pérez-Rodríguez, A.; Saucedo, E. Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu2ZnSnS4 Solar Cells. J. Am. Chem. Soc. 2012, 134, 8018–8021. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Sánchez, Y.; López-Marino, S.; Espíndola-Rodríguez, M.; Neuschitzer, M.; Sylla, D.; Fairbrother, A.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Impact of Sn(S,Se) Secondary Phases in Cu2ZnSn(S,Se)4 Solar Cells: A Chemical Route for Their Selective Removal and Absorber Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 12744–12751. [Google Scholar] [CrossRef]
- Siebentritt, S.; Schorr, S. Kesterites-a Challenging Material for Solar Cells. Prog. Photovoltaics Res. Appl. 2012, 20, 512–519. [Google Scholar] [CrossRef]
- Singh, M.; Rana, T.R.; Kim, J. Fabrication of Band Gap Tuned Cu2Zn(Sn1-XGex)(S,Se)4 Absorber Thin Film Using Nanocrystal-Based Ink in Non-Toxic Solvent. J. Alloy. Compd. 2016, 675, 370–376. [Google Scholar] [CrossRef]
- Zhao, W.; Pan, D.; Liu, S. (Frank) Kesterite Cu2Zn(Sn,Ge)(S,Se)4 Thin Film with Controlled Ge-Doping for Photovoltaic Application. Nanoscale 2016, 8, 10160–10165. [Google Scholar] [CrossRef]
- Guo, Q.; Ford, G.M.; Yang, W.-C.; Hages, C.J.; Hillhouse, H.W.; Agrawal, R. Enhancing the Performance of CZTSSe Solar Cells with Ge Alloying. Sol. Energy Mater. Sol. Cells 2012, 105, 132–136. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Ford, G.M.; Guo, Q.; Agrawal, R.; Hillhouse, H.W. Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chem. Mater. 2011, 23, 2626–2629. [Google Scholar] [CrossRef]
- Todorov, T.K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D.B. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Adv. Energy Mater. 2013, 3, 34–38. [Google Scholar] [CrossRef]
- Huang, T.J.; Yin, X.; Qi, G.; Gong, H. CZTS-Based Materials and Interfaces and Their Effects on the Performance of Thin Film Solar Cells. Phys. Status Solidi-Rapid Res. Lett. 2014, 8, 735–762. [Google Scholar] [CrossRef]
- Parthé, E.; Yvon, K.; Deitch, R.H. The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds. Acta Crystallogr. 1969, B25, 1164–1174. [Google Scholar] [CrossRef]
- Safdar, A.; Islam, M.; Akram, M.A.; Mujahid, M.; Khalid, Y.; Shah, S.I. Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films. J. Mater. Eng. Perform. 2016, 25, 457–465. [Google Scholar] [CrossRef]
- Khare, A.; Wills, A.W.; Ammerman, L.M.; Norris, D.J.; Aydil, E.S. Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 2011, 47, 11721–11723. [Google Scholar] [CrossRef]
- Nguyen, D.-C.; Ito, S.; Dung, D.V.A. Effects of Annealing Conditions on Crystallization of the CZTS Absorber and Photovoltaic Properties of Cu(Zn,Sn)(S,Se)2 Solar Cells. J. Alloy. Compd. 2015, 632, 676–680. [Google Scholar] [CrossRef]
- Mkawi, E.M.; Ibrahim, K.; Ali, M.K.M.; Farrukh, M.A.; Mohamed, A.S. Influence of Triangle Wave Pulse on the Properties of Cu2ZnSnS4 Thin Films Prepared by Single Step Electrodeposition. Sol. Energy Mater. Sol. Cells 2014, 130, 91–98. [Google Scholar] [CrossRef]
- Ziti, A.; Hartiti, B.; Labrim, H.; Fadili, S.; Batan, A.; Tahri, M.; Ridah, A.; Mounkachi, O.; Benyoussef, A.; Thevenin, P. Characteristics of Kesterite CZTS Thin Films Deposited by Dip-Coating Technique for Solar Cells Applications. J. Mater. Sci. Mater. Electron. 2019, 30, 13134–13143. [Google Scholar] [CrossRef]
- Chen, S.; Walsh, A.; Gong, X.-G.; Wei, S.-H. Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers. Adv. Mater. 2013, 25, 1522–1539. [Google Scholar] [CrossRef] [PubMed]
- Guc, M.; Litvinchuk, A.P.; Levcenko, S.; Izquierdo-Roca, V.; Fontané, X.; Valakh, M.Y.; Arushanov, E.; Pérez-Rodríguez, A. Optical Phonons in the Wurtzstannite Cu2ZnGeS4 Semiconductor: Polarized Raman Spectroscopy and First-Principle Calculations. Phys. Rev. B 2014, 89, 205205. [Google Scholar] [CrossRef]
- Khammar, M.; Ynineb, F.; Guitouni, S.; Bouznit, Y.; Attaf, N. Crystallite Size and Intrinsic Strain Contribution in Band Gap Energy Redshift of Ultrasonic-Sprayed Kesterite CZTS Nanostructured Thin Films. Appl. Phys. A 2020, 126, 398. [Google Scholar] [CrossRef]
- Caballero, R.; Victorov, I.; Serna, R.; Cano-Torres, J.M.; Maffiotte, C.; Garcia-Llamas, E.; Merino, J.M.; Valakh, M.; Bodnar, I.; León, M. Band-Gap Engineering of Cu2ZnSn1-xGexS4 Single Crystals and Influence of the Surface Properties. Acta Mater. 2014, 79, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Levcenko, S.; Caballero, R.; Dermenji, L.; Telesh, E.V.; Victorov, I.A.; Merino, J.M.; Arushanov, E.; Leon, M.; Bodnar, I.V. Preparation and Optical Characterization of Cu2ZnGeSe4 Thin Films. Opt. Mater. 2015, 40, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Y.E.; Piskach, L.V. Phase Diagram of the Cu2GeSe3–ZnSe System and Crystal Structure of the Cu2ZnGeSe4 Compound. J. Alloy. Compd. 2001, 329, 202–207. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Study of Structural and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se) Thin Films Synthesized by Chemical Spray Pyrolysis. CrystEngComm 2013, 15, 10500. [Google Scholar] [CrossRef]
- Giraldo, S.; Saucedo, E.; Neuschitzer, M.; Oliva, F.; Placidi, M.; Alcobé, X.; Izquierdo-Roca, V.; Kim, S.; Tampo, H.; Shibata, H.; et al. How Small Amounts of Ge Modify the Formation Pathways and Crystallization of Kesterites. Energy Environ. Sci. 2018, 11, 582–593. [Google Scholar] [CrossRef] [Green Version]
- El Radaf, I.M.; Al-Zahrani, H.Y.S. Facile Synthesis and Structural, Linear and Nonlinear Optical Investigation of p-Type Cu2ZnGeS4 Thin Films as a Potential Absorber Layer for Solar Cells. J. Electron. Mater. 2020, 49, 4843–4851. [Google Scholar] [CrossRef]
- Courel, M.; Sanchez, T.G.; Mathews, N.R.; Mathew, X. Cu2ZnGeS4 Thin Films Deposited by Thermal Evaporation: The Impact of Ge Concentration on Physical Properties. J. Phys. D Appl. Phys. 2018, 51, 095107. [Google Scholar] [CrossRef]
- Chen, S.; Gong, X.G.; Walsh, A.; Wei, S.-H. Electronic Structure and Stability of Quaternary Chalcogenide Semiconductors Derived from Cation Cross-Substitution of II-VI and I-III-VI2 Compounds. Phys. Rev. B 2009, 79, 165211. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Zhang, P.; Yuan, X.; Huang, F.; Zhang, W. Structural Properties and Quasiparticle Band Structures of Cu-Based Quaternary Semiconductors for Photovoltaic Applications. J. Appl. Phys. 2012, 111, 063709. [Google Scholar] [CrossRef] [Green Version]
- Kodan, N.; Auluck, S.; Mehta, B.R. A DFT Study of the Electronic and Optical Properties of a Photovoltaic Absorber Material Cu2ZnGeS4 Using GGA and MBJ Exchange Correlation Potentials. J. Alloy. Compd. 2016, 675, 236–243. [Google Scholar] [CrossRef]
- Gupta, G.K.; Chaurasiya, R.; Dixit, A. Theoretical Studies on Structural, Electronic and Optical Properties of Kesterite and Stannite Cu2ZnGe(S/Se)4 Solar Cell Absorbers. Comput. Condens. Matter 2019, 19, e00334. [Google Scholar] [CrossRef]
- Mesbahi, M.; Serdouk, F.; Benkhedir, M. A DFT Study of the Electronic and Optical Properties of Kesterite Phase of Cu2ZnGeS4 Using GGA, TB-MBJ, and U Exchange Correlation Potentials. Acta Phys. Pol. A 2018, 134, 358–361. [Google Scholar] [CrossRef]
- Cococcioni, M. The LDA+U approach: A simple hubbard correction for correlated ground states. In Correlated Electrons: From Models to Materials Modeling and Simulation; Forschungszentrum Julich: Julich, Germany, 2012; Volume 2. [Google Scholar]
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.H.; Marks, L.D. WIEN2k: An APW+lo Program for Calculating the Properties of Solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef]
- Schwarz, K.; Blaha, P.; Madsen, G.K.H. Electronic Structure Calculations of Solids Using the WIEN2k Package for Material Sciences. Comput. Phys. Commun. 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshak, A.H.; Jamal, M. Calculation of the Lattice Constant of Hexagonal Compounds with Two Dimensional Search of Equation of State and with Semilocal Functionals a New Package (2D-Optimize). J. Alloy. Compd. 2013, 555, 362–366. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikerouin, M.; Balli, M.; Farkous, M.; El-Yadri, M.; Dujardin, F.; Abdellah, A.B.; Feddi, E.; Correa, J.D.; Mora-Ramos, M.E. Effect of Lattice Deformation on Electronic and Optical Properties of CuGaSe2: Ab-Initio Calculations. Thin Solid Film. 2020, 696, 137783. [Google Scholar] [CrossRef]
- León, M.; Levcenko, S.; Serna, R.; Gurieva, G.; Nateprov, A.; Merino, J.M.; Friedrich, E.J.; Fillat, U.; Schorr, S.; Arushanov, E. Optical Constants of Cu2ZnGeS4 Bulk Crystals. J. Appl. Phys. 2010, 108, 093502. [Google Scholar] [CrossRef] [Green Version]
- Tyuterev, V.G.; Vast, N. Murnaghan’s Equation of State for the Electronic Ground State Energy. Comput. Mater. Sci. 2006, 38, 350–353. [Google Scholar] [CrossRef]
- Chen, D.; Ravindra, N.M. Electronic and Optical Properties of Cu2ZnGeX4 (X = S, Se and Te) Quaternary Semiconductors. J. Alloy. Compd. 2013, 579, 468–472. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Olekseyuk, I.D.; Piskach, L.V. X-ray Powder Diffraction Refinement of Cu2ZnGeTe4 Structure and Phase Diagram of the Cu2GeTe3–ZnTe System. J. Alloy. Compd. 2005, 397, 169–172. [Google Scholar] [CrossRef]
- Walsh, A.; Chen, S.; Wei, S.-H.; Gong, X.-G. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Energy Mater. 2012, 2, 400–409. [Google Scholar] [CrossRef]
- Höffling, B.; Schleife, A.; Rödl, C.; BechstedtChen, F. Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 2012, 85, 035305. [Google Scholar] [CrossRef] [Green Version]
- Kerroum, D.; Bouafia, H.; Sahli, B.; Hiadsi, S.; Abidri, B.; Bouaza, A.; Timaoui, M.A. Pressure Effect on Mechanical Stability and Optoelectronic Behavior of Zinc-Silicon Diarsenide ZnSiAs2-Chalcopyrite: DFT Investigation. Optik 2017, 139, 315–327. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hamdaoui, J.; El-Yadri, M.; Farkous, M.; Kria, M.; Courel, M.; Ojeda, M.; Pérez, L.M.; Tiutiunnyk, A.; Laroze, D.; Feddi, E.M. Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study. Nanomaterials 2021, 11, 2692. https://doi.org/10.3390/nano11102692
El Hamdaoui J, El-Yadri M, Farkous M, Kria M, Courel M, Ojeda M, Pérez LM, Tiutiunnyk A, Laroze D, Feddi EM. Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study. Nanomaterials. 2021; 11(10):2692. https://doi.org/10.3390/nano11102692
Chicago/Turabian StyleEl Hamdaoui, Jawad, Mohamed El-Yadri, Mohamed Farkous, Mohamed Kria, Maykel Courel, Miguel Ojeda, Laura M. Pérez, Anton Tiutiunnyk, David Laroze, and El Mustapha Feddi. 2021. "Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study" Nanomaterials 11, no. 10: 2692. https://doi.org/10.3390/nano11102692
APA StyleEl Hamdaoui, J., El-Yadri, M., Farkous, M., Kria, M., Courel, M., Ojeda, M., Pérez, L. M., Tiutiunnyk, A., Laroze, D., & Feddi, E. M. (2021). Strain Effects on the Electronic and Optical Properties of Kesterite Cu2ZnGeX4 (X = S, Se): First-Principles Study. Nanomaterials, 11(10), 2692. https://doi.org/10.3390/nano11102692