Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Microstructure, Surface Topography, and TiN Etching Analysis
3.2. Dielectric Characterization and Optical Implications
3.3. Schottky Barrier Measurements and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soltani, A.; Rousseau, M.; Gerbedoen, J.-C.; Mattalah, M.; Bonanno, P.L.; Telia, A.; Bourzgui, N.; Patriarche, G.; Ougazzaden, A.; BenMoussa, A. High performance TiN gate contact on AlGaN/GaN transistor using a mechanically strain induced P-doping. Appl. Phys. Lett. 2014, 104, 233506. [Google Scholar] [CrossRef]
- Prokudina, V.K. Titanium Nitride. In Concise Encyclopedia of Self-Propagating High-Temperature Synthesis; Borovinskaya, I.P., Gromov, A.A., Levashov, E.A., Maksimov, Y.M., Mukasyan, A.S., Rogachev, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ao, J.-P.; Suzuki, A.; Sawada, K.; Shinkai, S.; Naoi, Y.; Ohno, Y. Schottky Contacts of Refractory Metal Nitride on Gallium Nitrides using Reactive Sputtering. Vacuum 2010, 84, 1439. [Google Scholar] [CrossRef]
- Lester, L.F.; Brown, J.M.; Ramer, J.C.; Zhang, L.; Hersee, S.D. Nonalloyed Ti/Al Ohmic Contacts to n-type GaN Using High-Temperature Pre-Metallization Anneal. Appl. Phys. Lett. 1996, 69, 2737. [Google Scholar] [CrossRef]
- Boltasseva, A.; Shalaev, V.M. All that glitters need not be gold. Science 2015, 347, 1308. [Google Scholar] [CrossRef] [Green Version]
- Patsalas, P.; Kalfagiannis, N.; Kassevetis, S. Optical Properties and Plasmonic Performance of Titanium Nitride. Materials 2015, 8, 3128. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115. [Google Scholar] [CrossRef]
- Guler, U.; Ndukaife, J.C.; Naik, G.V.; Agwu Nnanna, A.G.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Lett. 2013, 13, 6178. [Google Scholar] [CrossRef]
- Ishii, S.; Sugavaneshwar, R.P.; Nagao, T. Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers. J. Phys. Chem. C 2016, 120, 2343. [Google Scholar] [CrossRef]
- Luther, B.P.; Mohney, S.E.; Jackson, T.N. Titanium and titanium nitride contacts to n-type gallium nitride. Semicond. Sci. Technol. 1998, 13, 1322. [Google Scholar] [CrossRef]
- Dimitriadisa, C.A.; Karakostasa, T.; Logothetidisa, S.; Kamarinosb, G.; Brinib, J.; Nouet, G. Contacts of titanium nitride to n- and p-type gallium nitride films. Solid-State Electron. 1999, 43, 1969. [Google Scholar] [CrossRef]
- Gautier, S.; Komninou, P.; Patsalas, P.; Kehagias, T.; Logothetidis, S.; Dimitriadis, C.A.; Nouet, G. Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semicond. Sci. Technol. 2003, 18, 594. [Google Scholar] [CrossRef]
- Maeda, M.; Yamasaki, T.; Takahashi, Y. Effect of interfacial reaction on electrical conduction across the interface between n-type gallium nitride and contact materials. J. Phys. Conf. Ser. 2012, 379, 012020. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Giannazzo, F.; Di Franco, S.; Corso, D.; Smecca, E.; Alberti, A.; Patti, A.; Roccaforte, F. Metal/p-GaN contacts on AlGaN/GaN heterostructures for normally-off HEMTs. Mater. Sci. Forum 2016, 858, 1170. [Google Scholar]
- Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632. [Google Scholar] [CrossRef] [PubMed]
- Furube, A.; Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication. NPG Asia Mater. 2017, 9, e454. [Google Scholar] [CrossRef]
- Wu, N. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679. [Google Scholar] [CrossRef]
- Maurya, K.C.; Shalaev, V.M.; Boltasseva, A.; Saga, B. Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular beam epitaxy. Opt. Mater. Express 2020, 10, 2679. [Google Scholar] [CrossRef]
- Yick, S.; Murdock, A.T.; Martin, P.J.; Kennedy, D.F.; Maschmeyer, T.; Bendavid, A. Tuning the plasmonic response of TiN nanoparticles synthesised by the transferred arc plasma technique. Nanoscale 2018, 10, 7566. [Google Scholar] [CrossRef]
- Huo, D.; Zhang, J.; Wang, H.; Ren, X.; Wang, C.; Su, H.; Zhao, H. Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array. Nanoscale Res. Lett. 2017, 12, 465. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Dutta, A.; Kinsey, N.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films. ACS Photon. 2018, 5, 4423. [Google Scholar] [CrossRef]
- Chen, N.C.; Lien, W.C.; Liu, C.R.; Huang, Y.L.; Lin, Y.R.; Chou, C.; Chang, S.Y.; Ho, C.W. Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry. J. Appl. Phys. 2011, 109, 043104. [Google Scholar] [CrossRef]
- Exarhos, S.; Alvarez-Barragan, A.; Aytan, E.; Balandin, A.A.; Mangolini, L. Plasmonic Core-Shell Zirconium Nitride-Silicon Oxynitride Nanoparticles. ACS Energy Lett. 2018, 3, 2349–2356. [Google Scholar] [CrossRef]
- Faujdar, S.; Pathania, P.; Katyal, J. Systematic investigation of transition metal nitrides (ZrN, TiN) based plasmonic multilayered core-shell nanoparticle for sensing. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Chavez, S.; Aslm, U.; Linic, S. Design Principles for Directing Energy and Energetic Charge Flow in Multicomponent Plasmonic Nanostructures. ACS Energy Lett. 2018, 3, 1590–1596. [Google Scholar] [CrossRef]
- Aslam, U.; Govind Rao, V.; Chavez, S.; Linic, S. Catalytic Conversion of Solar to Chemical Energy on Plasmonic Metal Nanostructures. Nat. Catal. 2018, 1, 656–665. [Google Scholar] [CrossRef]
- Cortés, E.; Besteiro, L.V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14, 16202–16219. [Google Scholar] [CrossRef]
- Naldoni, A.; Guler, U.; Wang, Z.X.; Marelli, M.; Malara, F.; Meng, X.G.; Besteiro, L.V.; Govorov, A.O.; Kildishev, A.V.; Boltasseva, A.; et al. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5, 1601031. [Google Scholar] [CrossRef] [Green Version]
- Guler, U.; Zemlyanov, D.; Kim, J.; Wang, Z.; Chandrasekar, R.; Meng, X.; Stach, E.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717. [Google Scholar] [CrossRef]
- Liu, Y.; Kamei, T.; Enod, K.; O’Uchi, S.; Tsukada, J.; Yamauchi, H.; Hayashida, T.; Ishikawa, Y.; Matsukawa, T.; Sakamoto, K.; et al. Nanoscale Wet Etching of Physical-Vapor-Deposited Titanium Nitride and Its Application to Sub-30-nm-Gate-Length Fin-Type Double-Gate Metal–Oxide–Semiconductor Field-Effect Transistor Fabrication. Jpn. J. Appl. Phys. 2010, 49, 06GH18. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Ohmic Contacts to Gallium Nitride Materials. Appl. Surf. Sci. 2016, 383, 324–345. [Google Scholar] [CrossRef]
- Das, S.; Guha, S.; Ghadai, R.; Kumar, D.; Swain, B. Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films. Appl. Phys. A 2017, 123, 412. [Google Scholar] [CrossRef]
- Spengler, W.; Kaiser, R.; Christensen, A.N.; Müller-Vogt, G. Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 1978, 17, 1095. [Google Scholar] [CrossRef]
- Chowdhury, R.; Vispute, R.; Jagannadham, K.; Narayan, J. Characteristics of titanium nitride films grown by pulsed laser deposition. J. Mater. Res. 1996, 11, 1458–1469. [Google Scholar] [CrossRef]
- Georgson, M.; Roos, A.; Ribbing, C.-G. The Influence of Preparation Conditions on the Optical Properties of Titanium Nitride Based Solar Control Films. J. Vac. Sci. Technol. A 1990, 9, 2191. [Google Scholar] [CrossRef]
- Reddy, H.; Guler, U.; Kudyshev, Z.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. ACS Photon. 2017, 4, 1413. [Google Scholar] [CrossRef]
- Herrera, L.J.M.; Arboleda, D.M.; Schninca, D.C.; Scaffardi, R.B. Determination of the Plasma Frequency, Damping Constant, and Size Distribution from the Complex Dielectric Function of Noble Metal Nanoparticles. J. Appl. Phys. 2014, 116, 233105. [Google Scholar] [CrossRef]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A. Optical Properties of the Metals Al, CO, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far-Infrared. Appl. Opt. 1983, 22, 1099. [Google Scholar] [CrossRef]
- Simpkins, B.S.; Purdy, A.; Epshteyn, A.; Baturina, O. Photoelectrochemical Oxidation Enhanced by Nitride Plasmonics. J. Phys. Chem. C 2019, 123, 13863. [Google Scholar] [CrossRef]
- Baturina, O.A.; Epshteyn, A.; Simpkins, B.S.; Bhattarai, N.; Brintlinger, T.; Santiago, E.Y.; Govoro, A.O. Comparing Photoelectrochemical Methanol Oxidation Mechanisms for Gold versus Titanium Nitride Nanoparticles Dispersed in TiO2 Matrix. J. Electrochem. Soc. 2019, 166, H485. [Google Scholar] [CrossRef]
- Ahn, W.; Vurgaftman, I.; Pietron, J.J.; Pehrsson, P.E.; Simpkins, B.S. Energy-Tunable Photocatalysis by Hot Carriers Generated by Surface Plasmon Polaritons. J. Mater. Chem. A 2019, 7, 7015. [Google Scholar] [CrossRef]
- Aizpurua, J.; Bryant, G.W.; Richter, L.J.; Garcia de Abajo, F.J.; Kelley, B.K.; Mallouk, T. Optical Properties of Metallic Nanorods for Field-Enhanced Spectroscopy. Phys. Rev. B 2005, 71, 235420. [Google Scholar] [CrossRef] [Green Version]
- Schroder, D. Semiconductor Material and Device Characterization, 3rd ed.; IEEE Press: Piscataway, NJ, USA, 2005. [Google Scholar]
- Pankove, J.I.; Bloom, S.; Harbeke, G. Optical Properties of GaN. RCA Rev. 1975, 36, 163. [Google Scholar]
- Jeon, J.W.; Seong, T.Y.; Kim, H.; Kim, K.K. TiN/Al Ohmic contacts to N-face n -type GaN for high-performance vertical light-emitting diodes. Appl. Phys. Lett. 2009, 94, 042102. [Google Scholar] [CrossRef]
- Li, L.; Nakamura, R.; Wang, Q.; Jiang, Y.; Ao, J.P. Synthesis of titanium nitride for self-aligned gate AlGaN/GaN heterostructure field-effect transistors. Nanoscale Res. Lett. 2014, 9, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y. Recent research on ohmic contacts on gan-based materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 738, 012007. [Google Scholar] [CrossRef]
- Mori, T.; Kozawa, T.; Ohwaki, T.; Taga, Y.; Nagai, S.; Yamasaki, S.; Asami, S.; Shibata, N.; Koike, M. Schottky barriers and contact resistances on p-type GaN. Appl. Phys. Lett. 1996, 69, 3537. [Google Scholar] [CrossRef]
- Yu, L.S.; Jia, L.; Qiao, D.; Lau, S.S.; Li, J.; Lin, J.Y.; Jiang, H.X. The Origins of Leaky Characteristics of Schottky Diodes on p-GaN. IEEE Trans. Electron Devices 2003, 50, 292. [Google Scholar] [CrossRef]
- Cao, X.A.; Pearton, S.J.; Dang, G.; Zhang, A.P.; Ren, F.; van Hove, J.M. Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN. Appl. Phys. Lett. 1999, 75, 4130. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpkins, B.S.; Maximenko, S.I.; Baturina, O. Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection. Nanomaterials 2022, 12, 837. https://doi.org/10.3390/nano12050837
Simpkins BS, Maximenko SI, Baturina O. Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection. Nanomaterials. 2022; 12(5):837. https://doi.org/10.3390/nano12050837
Chicago/Turabian StyleSimpkins, Blake S., Sergey I. Maximenko, and Olga Baturina. 2022. "Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection" Nanomaterials 12, no. 5: 837. https://doi.org/10.3390/nano12050837
APA StyleSimpkins, B. S., Maximenko, S. I., & Baturina, O. (2022). Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection. Nanomaterials, 12(5), 837. https://doi.org/10.3390/nano12050837