Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Growth
2.2. Characterization
3. Results and Discussion
3.1. Evaluation of the Growth Parameters
3.2. Ensemble Photoluminescene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Layer Structure
Thickness/Time | Material/Operation | Ts/°C | As−BEP/Torr | Intended Doping/cm−3 |
---|---|---|---|---|
Surface | ||||
5 nm | GaAs:C | 600 | 9.6 × 10−6 | 8 × 1018 |
10 nm | Al0.15Ga0.85As:C | 600 | 9.6 × 10−6 | 8 × 1018 |
65 nm | Al0.15Ga0.85As:C | 600 | 9.6 × 10−6 | 2 × 1018 |
273.6 nm | Al0.33Ga0.67As | 600 | 9.6 × 10−6 | undoped |
120 s | annealing GaAs annealing | 635 −> 600 | 9.6 × 10−6 | undoped |
2 nm | 635 | 9.6 × 10−6 | undoped | |
60 s | 635 | 9.6 × 10−6 | undoped | |
60 s 0.37 nm/1.3 MLeq 60 s | etching aluminum pump pump | 635 635 635 | 9 × 10−8 −> 6 × 10−8 9 × 10−8 *−> 9 × 10−8 | undoped undoped undoped |
180 s | 620 −> 635 | 9.6 × 10−6−> * | undoped | |
30 s 10 nm | annealing Al0.33Ga0.67As | 620 620 | 9.6 × 10−6 9.6 × 10−6 | undoped undoped |
15 nm | Al0.15Ga0.85As | 620 | 9.6 × 10−6 | undoped |
5 nm | Al0.15Ga0.85As | 605 | 9.6 × 10−6 | undoped |
150 nm | Al0.15Ga0.85As:Si | 620 | 9.6 × 10−6 | 2 × 1018 |
50 nm | Al0.15Ga0.85As | 620 | 9.6 × 10−6 | undoped |
DBR: 10 × 67.08 | AlAs | 620 | 9.6 × 10−6 | undoped |
DBR: 10 × 57.54 nm | Al0.33Ga0.67As | 620 | 9.6 × 10−6 | undoped |
SPS: 22 × 2.8 nm | GaAs | 620 | 9.6 × 10−6 | undoped |
SPS: 22 × 2.8 nm | AlAs | 620 | 9.6 × 10−6 | undoped |
Buffer: 10 × 10 nm | GaAs | 620 | 9.6 × 10−6 | undoped |
625 µm GaAs (001) Substrate |
Appendix B. Gradient Growth and Effective Etch Material
Appendix C. Exemplary µ-PL Map
Appendix D. Proof-of-Concept on Cleaved-Edge PL
Appendix E. Standing-Wave Field of the Photonic Sample
Appendix F. Fit-Parameters
Figure | Peak | Height/kcts/s | Position/nm | FWHM/meV |
---|---|---|---|---|
Figure 7b | S (1.2 mW) P (1.2 mW) D (1.2 mW) | 14.9 ± 0.2 6.8 ± 0.2 1.1 ± 0.2 | 791.6 ± 0.2 778.7 ± 0.2 766.9 ± 1.4 | 21.7 ± 0.6 23 ± 2 20.3 * |
Figure 7b | S (1.6 mW) P (1.6 mW) D (1.6 mW) F (1.6 mW) | 25.9 ± 0.3 27.3 ± 0.2 11.7 * 2.2 * | 792.2 ± 0.2 778.5 ± 0.1 766.3 ± 0.3 755.0 * | 24.5 ± 0.5 23.8 ± 0.7 25.0 * 27 ± 7 |
Figure 7d | S (1.5 mW) | 25.72 ± 0.07 | 801.0 ± 0.1 | 62.7 ± 0.3 |
Figure 7d | S (4.5 mW) P (4.5 mW) | 54.5 ± 0.5 57.6 ± 0.2 | 801.0 * 780.5 ± 0.1 | 65.8 ± 0.4 59.9 ± 0.4 |
References
- Zhai, L.; Löbl, M.C.; Nguyen, G.N.; Ritzmann, J.; Javadi, A.; Spinnler, C.; Wieck, A.D.; Ludwig, A.; Warburton, R.J. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef]
- Uppu, R.; Pedersen, F.T.; Wang, Y.; Olesen, C.T.; Papon, C.; Zhou, X.; Midolo, L.; Scholz, S.; Wieck, A.D.; Ludwig, A.; et al. Scalable integrated single-photon source. Sci. Adv. 2020, 6, eabc8268. [Google Scholar] [CrossRef]
- Tomm, N.; Javadi, A.; Antoniadis, N.O.; Najer, D.; Löbl, M.C.; Korsch, A.R.; Schott, R.; Valentin, S.R.; Wieck, A.D.; Ludwig, A.; et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 2021, 16, 399–403. [Google Scholar] [CrossRef]
- Liu, J.; Su, R.; Wei, Y.; Yao, B.; Da Silva, S.F.C.; Yu, Y.; Iles-Smith, J.; Srinivasan, K.; Rastelli, A.; Li, J.; et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 2019, 14, 586–593. [Google Scholar] [CrossRef]
- Keil, R.; Zopf, M.; Chen, Y.; Höfer, B.; Zhang, J.; Ding, F.; Schmidt, O.G. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 2017, 8, 15501. [Google Scholar] [CrossRef] [Green Version]
- Sasakura, H.; Kayamori, S.; Adachi, S.; Muto, S. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth. J. Appl. Phys. 2007, 102, 013515. [Google Scholar] [CrossRef] [Green Version]
- Wolters, J.; Buser, G.; Horsley, A.; Béguin, L.; Jöckel, A.; Jahn, J.-P.; Warburton, R.J.; Treutlein, P. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 2017, 119, 060502. [Google Scholar] [CrossRef] [Green Version]
- Sukachev, D.D.; Sipahigil, A.; Nguyen, C.T.; Bhaskar, M.K.; Evans, R.E.; Jelezko, F.; Lukin, M.D. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 2017, 119, 223602. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.; Zallo, E.; Schmidt, O.G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 2012, 112, 054303. [Google Scholar] [CrossRef]
- Yuan, X.; Weyhausen-Brinkmann, F.; Martín-Sánchez, J.; Piredda, G.; Křápek, V.; Huo, Y.; Huang, H.; Schimpf, C.; Schmidt, O.G.; Edlinger, J.; et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Löbl, M.C.; Jahn, J.-P.; Huo, Y.; Treutlein, P.; Schmidt, O.G.; Rastelli, A.; Warburton, R.J. Large-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett. 2020, 117, 083106. [Google Scholar] [CrossRef]
- Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 2009, 94, 183113. [Google Scholar] [CrossRef]
- Gurioli, M.; Wang, Z.; Rastelli, A.; Kuroda, T.; Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 2019, 18, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Nguyen, G.N.; Spinnler, C.; Ritzmann, J.; Löbl, M.C.; Wieck, A.D.; Ludwig, A.; Javadi, A.; Warburton, R.J. Quantum Interference of Identical Photons from Remote Quantum Dots. 2021. Available online: https://arxiv.org/pdf/2106.03871 (accessed on 27 August 2021).
- Langer, F.; Plischke, D.; Kamp, M.; Höfling, S. Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device. Appl. Phys. Lett. 2014, 105, 081111. [Google Scholar] [CrossRef] [Green Version]
- Bouet, L.; Vidal, M.; Mano, T.; Ha, N.; Kuroda, T.; Durnev, M.V.; Glazov, M.M.; Ivchenko, E.L.; Marie, X.; Amand, T.; et al. Charge tuning in [111] grown GaAs droplet quantum dots. Appl. Phys. Lett. 2014, 105, 082111. [Google Scholar] [CrossRef] [Green Version]
- Löbl, M.C.; Spinnler, C.; Javadi, A.; Zhai, L.; Nguyen, G.; Ritzmann, J.; Midolo, L.; Lodahl, P.; Wieck, A.D.; Ludwig, A.; et al. Radiative Auger process in the single-photon limit. Nat. Nanotechnol. 2020, 15, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Spinnler, C.; Zhai, L.; Nguyen, G.N.; Ritzmann, J.; Wieck, A.D.; Ludwig, A.; Javadi, A.; Reiter, D.E.; Machnikowski, P.; Warburton, R.J.; et al. Optically Driving the Radiative Auger Transition. 2021. Available online: https://arxiv.org/pdf/2105.03447 (accessed on 27 August 2021).
- Kuhlmann, A.V.; Houel, J.; Ludwig, A.; Greuter, L.; Reuter, D.; Wieck, A.D.; Poggio, M.; Warburton, R.J. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 2013, 9, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, A.; Prechtel, J.H.; Kuhlmann, A.V.; Houel, J.; Valentin, S.R.; Warburton, R.J.; Wieck, A.D. Ultra-low charge and spin noise in self-assembled quantum dots. J. Cryst. Growth 2017, 477, 193–196. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Korsch, A.R.; Schmidt, M.; Ebler, C.; Labud, P.A.; Schott, R.; Lochner, P.; Brinks, F.; Wieck, A.D.; Ludwig, A. Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells. J. Cryst. Growth 2020, 550, 125884. [Google Scholar] [CrossRef]
- Huo, Y.H.; Rastelli, A.; Schmidt, O.G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 2013, 102, 152105. [Google Scholar] [CrossRef] [Green Version]
- Pakarinen, J.; Polojärvi, V.; Laukkanen, P.; Tukiainen, A.; Laakso, A.; Peng, C.; Tuomisto, P.; Korpijärvi, V.-M.; Puustinen, J.; Pessa, M. An effect of as flux on GaAs/AlAs quantum wells: A combined photoluminescence and reflection high-energy electron diffraction study. Appl. Surf. Sci. 2008, 255, 2985–2988. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liang, B.L.; Sablon, K.A.; Salamo, G.J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 2007, 90, 113120. [Google Scholar] [CrossRef]
- Heyn, C.; Bartsch, T.; Sanguinetti, S.; Jesson, D.; Hansen, W. Dynamics of mass transport during nanohole drilling by local droplet etching. Nanoscale Res. Lett. 2015, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Fuster, D.; González, Y.; González, L. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs (001). Nanoscale Res. Lett. 2014, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Zocher, M.; Heyn, C.; Hansen, W. Alloying during local droplet etching of AlGaAs surfaces with aluminium. J. Appl. Phys. 2019, 125, 025306. [Google Scholar] [CrossRef]
- Löbl, M.C.; Zhai, L.; Jahn, J.-P.; Ritzmann, J.; Huo, Y.; Wieck, A.D.; Schmidt, O.G.; Ludwig, A.; Rastelli, A.; Warburton, R.J. Correlations between optical properties and Voronoi-cell area of quantum dots. Phys. Rev. B 2019, 100, 155402. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, E.; Calleja, E.; Izpura, J.-I.; García, F.; Romero, A.L.; Sanchez-Rojas, J.L.; Powell, A.L.; Castagné, J. Techniques to minimize DX center deleterious effects in III-V device performance. J. Appl. Phys. 1993, 73, 4988–4997. [Google Scholar] [CrossRef]
- Küster, A.; Heyn, C.; Ungeheuer, A.; Juska, G.; Moroni, S.T.; Pelucchi, E.; Hansen, W. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures. Nanoscale Res. Lett. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Heyn, C.; Zocher, M.; Schnüll, S.; Hansen, W. Role of arsenic during aluminum droplet etching of nanoholes in AlGaAs. Nanoscale Res. Lett. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J.; Jesson, D.E.; Tang, W.X. Running droplets of gallium from evaporation of gallium arsenide. Science 2009, 324, 236–238. [Google Scholar] [CrossRef]
- Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J.S.; Schmidt, O.G.; Rastelli, A.; Trotta, R. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 2017, 8, 15506. [Google Scholar] [CrossRef]
- Heyn, C.; Ranasinghe, L.; Zocher, M.; Hansen, W. Shape-dependent stark shift and emission-line broadening of quantum dots and rings. J. Phys. Chem. C 2020, 124, 19809–19816. [Google Scholar] [CrossRef]
- Najer, D.; Söllner, I.; Sekatski, P.; Dolique, V.; Löbl, M.C.; Riedel, D.; Schott, R.; Starosielec, S.; Valentin, S.R.; Wieck, A.D.; et al. A gated quantum dot strongly coupled to an optical microcavity. Nat. Cell Biol. 2019, 575, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Korsch, A.R.; Nguyen, G.N.; Schmidt, M.; Ebler, C.; Valentin, S.R.; Lochner, P.; Rothfuchs, C.; Wieck, A.D.; Ludwig, A. Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir. Phys. Rev. B 2019, 99, 165303. [Google Scholar] [CrossRef]
- Huang, X.; Zhong, H.; Yang, J.; Liu, L.; Liu, J.; Yu, Y.; Yu, S. Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy. Nanotechnology 2020, 31, 495701. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babin, H.G.; Ritzmann, J.; Bart, N.; Schmidt, M.; Kruck, T.; Zhai, L.; Löbl, M.C.; Nguyen, G.N.; Spinnler, C.; Ranasinghe, L.; et al. Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode. Nanomaterials 2021, 11, 2703. https://doi.org/10.3390/nano11102703
Babin HG, Ritzmann J, Bart N, Schmidt M, Kruck T, Zhai L, Löbl MC, Nguyen GN, Spinnler C, Ranasinghe L, et al. Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode. Nanomaterials. 2021; 11(10):2703. https://doi.org/10.3390/nano11102703
Chicago/Turabian StyleBabin, Hans Georg, Julian Ritzmann, Nikolai Bart, Marcel Schmidt, Timo Kruck, Liang Zhai, Matthias C. Löbl, Giang N. Nguyen, Clemens Spinnler, Leonardo Ranasinghe, and et al. 2021. "Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode" Nanomaterials 11, no. 10: 2703. https://doi.org/10.3390/nano11102703
APA StyleBabin, H. G., Ritzmann, J., Bart, N., Schmidt, M., Kruck, T., Zhai, L., Löbl, M. C., Nguyen, G. N., Spinnler, C., Ranasinghe, L., Warburton, R. J., Heyn, C., Wieck, A. D., & Ludwig, A. (2021). Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode. Nanomaterials, 11(10), 2703. https://doi.org/10.3390/nano11102703