Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen
Abstract
:1. Introduction
- ➢
- UV radiation A with a wavelength of 315–400 nanometers which accounts for 8% of total sun UV radiation;
- ➢
- UV radiation B with a wavelength of 280–315 nanometers which accounts for 1% of the total sun UV radiation; and
- ➢
- UV radiation C with a wavelength of 100–280 nanometers which is completely absorbed by the atmosphere and the ozone layer [10].
2. Experimental
2.1. Materials and Methodology
2.2. Aging Process
2.3. Characterization Methods
2.3.1. Fourier Transform Infrared Spectroscopy Tests (FT-IR)
2.3.2. Rheological Tests
2.3.3. Field Emission Scanning Electron Microscope Tests (FESEM)
3. Results and Discussion
3.1. Surface Morphology
3.2. FT-IR Analysis
3.3. Viscoelastic Properties
3.3.1. Complex Modulus and Phase Angle
3.3.2. Resistance to Permanent Deformation
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
DSR | Dynamic shear rheometer |
wt.-% | weight-% |
FT-IR | Fourier transform infrared spectroscopy |
SEM | Scanning electron microscopy |
UV | Ultraviolet |
RTFOT | Rolling thin film oven test |
NPs | Nanoparticles |
IVA | Index of viscosity aging |
IC=O | C=O group index |
IS=O | S=O group index |
CR | Change rate |
DLVO | Derjaguin–Landau–Verwey–Overbeek |
References
- Zhang, H.L.; Yu, J.Y.; Feng, Z.G.; Xue, L.H.; Wu, S.P. Effect of aging on the morphology of bitumen by atomic force microscopy. J. Microsc. 2012, 246, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Zhang, Z.; Zou, B.; Zhu, Z.; Lu, G.; Yu, H. Effect of aging on chemical and rheological properties of bitumen. Polymers 2018, 10, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, A.M.; Fini, E.H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel 2019, 242, 408–415. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Yang, B.; Chang, X.; Wan, C.; Wang, Z. Aging characteristics of bitumen from different bituminous pavement structures in service. Materials 2019, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G.; Wang, D.; Kim, Y.; Wistuba, M.P. Experimental Investigation on Ultraviolet Aging Properties of Silica Nanoparticles-Modified Bitumen; 280108, RILEM ISBM Lyon 2020; RILEM, Springer: Lyon, France, 2020. [Google Scholar]
- Zhang, H.; Zhu, C.; Yu, J.; Tan, B.; Shi, C. Effect of nano-zinc oxide on ultraviolet aging properties of bitumen with 60/80 penetration grade. Mater. Struct. 2015, 48, 3249–3257. [Google Scholar] [CrossRef]
- Karahancer, S. Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt. Pet. Sci. Technol. 2020, 38, 773–784. [Google Scholar] [CrossRef]
- Hu, J.; Wu, S.; Liu, Q.; García Hernández, M.I.; Zeng, W.; Nie, S.; Wan, J.; Zhang, D.; Li, Y. The effect of ultraviolet radiation on bitumen aging depth. Materials 2018, 11, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.G.; Yu, J.Y.; Zhang, H.L.; Kuang, D.L.; Xue, L.H. Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen. Mater. Struct. 2013, 46, 1123–1132. [Google Scholar] [CrossRef]
- Kim, J.J.; Andrew, T.L. Real-time and noninvasive detection of UV-Induced deep tissue damage using electrical tattoos. Biosens. Bioelectron. 2020, 150, 111909. [Google Scholar] [CrossRef]
- Behnood, A. Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders. Clean. Eng. Technol. 2020, 1, 100028. [Google Scholar] [CrossRef]
- Kleizienė, R.; Paliukaitė, M.; Vaitkus, A. (Eds.) Effect of Nano SiO2, TiO2 and ZnO Modification to Rheological Properties of Neat and Polymer Modified Bitumen. In Proceedings of the International Symposium on Asphalt Pavement & Environment, Padua, Italy, 11–13 September 2019; Springer: Berlin/Heidelber, Germany, 2019. [Google Scholar]
- Cheraghian, G. Synthesis and properties of polyacrylamide by nanoparticles, effect nanoclay on stability polyacrylamide solution. Micro Nano Lett. 2017, 12, 40–44. [Google Scholar] [CrossRef]
- Cheraghian, G.; Falchetto, A.C.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Moon, K.H.; Wistuba, M.P. Warm mix asphalt technology: An up to date review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Jin, J.; Chen, B.; Liu, L.; Liu, R.; Qian, G.; Wei, H.; Zheng, J. A study on modified bitumen with metal doped nano-TiO2 pillared montmorillonite. Materials 2019, 12, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhao, Z.; Li, Y.; Pang, L.; Amirkhanian, S.; Riara, M. Evaluation of aging resistance of graphene oxide modified asphalt. Appl. Sci. 2017, 7, 702. [Google Scholar] [CrossRef]
- Cheraghian, G.; Wistuba, M.P. Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Mai, Z.; Liu, X.; Ye, D.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Xu, W. UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO 2. Carbohydr. Polym. 2018, 25, 3635–3647. [Google Scholar]
- Mai, Z.; Xiong, Z.; Shu, X.; Liu, X.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Zhang, M.; Xu, W.; et al. Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydr. Polym. 2018, 199, 516–525. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, W.; Tang, B.; Sun, L.; Wang, X. Synthesis of TiO2 & SiO2 Nanoparticles as Efficient UV Absorbers and Their Application on Wool. Text Res. J. 2017, 87, 1784–1792. [Google Scholar]
- Zhu, T.; Li, S.; Huang, J.; Mihailiasa, M.; Lai, Y. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Mater. Des. 2017, 134, 342–351. [Google Scholar] [CrossRef]
- Chen, H.; Li, R.; Xu, X.; Zhao, P.; Wong, D.S.; Chen, X.; Chen, S.; Yan, X. Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display. J. Mater. Sci. 2019, 54, 1236–1247. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, M.; Yu, H.; Wang, W.; Yin, P. Sub-nanometer titanium-oxo cluster-polymer nanocomposites for elastic, transparent UV-resistant films and nano-coatings. Polym. Compos. 2020, 41, 306–313. [Google Scholar] [CrossRef]
- Liu, P.; Gao, C.; Han, C.; Tang, H.; Wang, F.; Ding, Y.; Zhang, S.; Yang, M. Nanosilica-immobilized UV absorber: Synthesis and photostability of polyolefins. Polym. Int. 2015, 64, 1053–1059. [Google Scholar] [CrossRef]
- Cheraghian, G. Evaluation of clay and fumed silica nanoparticles on adsorption of surfactant polymer during enhanced oil recovery. J. Jpn. Pet. Inst. 2017, 60, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G.; Hendraningrat, L. A review on applications of nanotechnology in the enhanced oil recovery part B: Effects of nanoparticles on flooding. Int. Nano Lett. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G.; Hendraningrat, L. A review on applications of nanotechnology in the enhanced oil recovery part A: Effects of nanoparticles on interfacial tension. Int. Nano Lett. 2016, 6, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Heredia-Guerrero, J.A.; Athanassiou, A.; Bayer, I.S. Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chem. Eng. J. 2017, 319, 321–332. [Google Scholar] [CrossRef]
- Zakani, B.; Ansari, M.; Grecov, D. Rotational rheometry of a fumed silica lubricating grease. J. Tribol. 2020, 142. [Google Scholar] [CrossRef]
- Aydoğan, C.; El Rassi, Z. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. J. Chromatogr. A 2016, 1445, 55–61. [Google Scholar]
- Benane, B.; Baeza, G.P.; Chal, B.; Roiban, L.; Meille, S.; Olagnon, C.; Foray, G. Multiscale structure of super insulation nano-fumed silicas studied by SAXS, tomography and porosimetry. Acta Mater. 2019, 168, 401–410. [Google Scholar] [CrossRef]
- Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49, 2183–2196. [Google Scholar] [CrossRef] [Green Version]
- Cheraghian, G. Application of nano-fumed silica in heavy oil recovery. Pet. Sci. Technol. 2016, 34, 12–18. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q.; Yang, Q.; Tovar, C.; Tan, Y.; Oeser, M. Thermal oxidative and ultraviolet ageing behaviour of nano-montmorillonite modified bitumen. Road Mater. Pavement Des. 2021, 22, 1–19. [Google Scholar] [CrossRef]
- Zhan, Y.; Xie, J.; Wu, Y.; Wang, Y. Synergetic Effect of Nano-ZnO and Trinidad Lake Asphalt for Antiaging Properties of SBS-Modified Asphalt. Adv. Civ. Eng. 2020, 3239793. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, M.; He, B.; Han, X.; Yu, J.; Xue, L. Investigation of ultraviolet aging resistance of bitumen modified by layered double hydroxides with different particle sizes. Constr. Build. Mater. 2019, 196, 166–174. [Google Scholar] [CrossRef]
- Wang, R.; Yue, J.; Li, R.; Sun, Y. Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes. J. Mater. Civ. Eng. 2019, 31, 04019274. [Google Scholar] [CrossRef]
- Zhang, W.; Jun, S.; Zhirong, J. The UV anti-aging performance of TPS modified bitumen. Pet. Sci. Technol. 2018, 36, 1164–1169. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- Yang, S.; Yan, K.; He, B.; He, W.; Wang, D.; Wang, H. Ultraviolet and PAV aging procedures influence on rheological characteristics of Sasobit/SBS modified binder containing titanium dioxide nanoparticles. Pet. Sci. Technol. 2018, 36, 1524–1530. [Google Scholar] [CrossRef]
- D113. A Standard Test method for Ductility of Bituminous Materials. (Standards. ABo, ASTM). 2007. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D113-07.htm (accessed on 10 February 2021).
- ASTM DJASfT. Standard test method for softening point of bitumen (ring-and-ball apparatus). In Materials; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM DJU, ASTM International. Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Shu, B.; Wu, S.; Li, C.; Long, Y.; Liu, Q. Inhibition effect and mechanism of mesoporous silica hollow nanospheres on asphalt VOCs. Emerg. Mater. Res. 2019, 8, 283–289. [Google Scholar] [CrossRef]
- Geçkil, T. Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen. Materials 2019, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Mansourkhaki, A.; Ameri, M.; Habibpour, M.; Daryaee, D. The effect of polybutadiene rubber (PBR) on chemical and rheological properties of the binder including RAP. Constr. Build. Mater. 2020, 244, 118320. [Google Scholar] [CrossRef]
- Xiong, M.; Ren, Z.; Liu, W. Fabrication of UV-resistant and superhydrophobic surface on cotton fabric by functionalized polyethyleneimine/SiO 2 via layer-by-layer assembly and dip-coating. Cellulose 2019, 26, 8951–8962. [Google Scholar] [CrossRef]
- Cao, Z.; Xue, L.; Wu, M.; He, B.; Yu, J.; Chen, M. Effect of etched Layered double hydroxides on anti ultraviolet aging properties of bitumen. Constr. Build. Mater. 2018, 178, 42–50. [Google Scholar] [CrossRef]
- Cheraghian, G.; Tardasti, S. Improved oil recovery by the efficiency of nano-particle in imbibition mechanism. In Proceedings of the 2nd EAGE International Conference KazGeo, Almaty, Kazakhstan, 29–31 October 2012. Earthdoc. [Google Scholar]
- Alizadeh, A.; Modarres, A. Mechanical and microstructural study of rap–clay composites containing bitumen emulsion and lime. J. Mater. Civ. Eng. 2019, 31, 04018383. [Google Scholar] [CrossRef]
- Sidun, I.; Vollis, O.; Solodkyy, S.; Gunka, V. (Eds.) Cohesion of Slurry Surfacing Mix with Slow Setting Bitumen Emulsions. In Proceedings of the International Conference Current Issues of Civil and Environmental Engineering Lviv-Košice–Rzeszów, Lviv, Ukraine, 11–13 September 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Cheraghian, G.; Rostami, S.; Afrand, M. Nanotechnology in enhanced oil recovery. Processes 2020, 8, 1073. [Google Scholar] [CrossRef]
- Takamura, K.; James, A. Paving with asphalt emulsions. In Advances in Asphalt Materials; Woodhead Publishing: Sawston, UK, 2015; pp. 393–426. [Google Scholar]
- Yates, P.D.; Franks, G.V.; Biggs, S.; Jameson, G.J. Heteroaggregation with nanoparticles: Effect of particle size ratio on optimum particle dose. Colloids Surf. A Physicochem. Eng. Asp. 2005, 255, 85–90. [Google Scholar] [CrossRef]
Nanomaterial Additives | Content | Intensity of UV Radiation | Bitumen Thickness | Aging Time | Aging Temperature (°C) | Observed Effect | References |
---|---|---|---|---|---|---|---|
Montmorillonite | 5 wt.-% | 2800 μW/cm2 | - | 288 h | 60 | Used two types of montmorillonite (PMMT and OMMT)/improved UV resistance | [34] |
Titanium dioxide/montmorillonite | 4–6 wt.-% | 3.18 W/cm2 | 1 mm | 336 h | - | 5 wt.-% of the modifier provided was the best UV aging resistance for the bitumen | [15] |
Zinc oxide | 2–3 wt.-% | - | - | 6 d | 80 | 3 wt.-% has the best anti-aging performance | [35] |
Mg–Al–CO3 layered double hydroxides | 3 wt.-% | 1.2 W/cm2 | - | 9 d | 60 | Layered double hydroxides with 180 nm has the strongest ability to absorb and reflect UV light | [36] |
Graphene oxide and carbon nanotubes | 1–3 wt.-% | 129 W/m2 | 1.5 mm | 12 d | 45 | 3 wt.-% was better than that of 1 wt.-% GO/improved the UV aging resistance | [37] |
Clay | 1–3 wt.-% | 10 W/m2 | 1 mm | 12 d | 60 | 2% had a better performance/improved the UV aging resistance | [17] |
Titanium dioxide | 3 wt.-% | 27.58 W/cm2 | - | 43 d | 60 | 0.3 wt.-% TiO2 + 0.1 wt.-% butylated hydroxytoluenecan significantly reduced the UV aging rate | [38] |
Graphene oxide | 0.5–1.5 wt.-% | 2000 μW/cm2 | 3.2 | 9 d | 50 | 1.5 wt.-% has the best anti-aging performance | [16] |
Zinc oxide | 1–5 wt.-% | - | 3.2 mm | 400 h | - | The reasonable dosage of nano-ZnO for anti-aging performance determined as 3.0 wt.-% | [39] |
Titanium dioxide | 1–5 wt.-% | 8 W/m2 | - | 6 d | 60 | improve the UV aging resistance | [40] |
Physical Properties | Ductility (@ 25 °C, cm) | Softening Point (°C) | Penetration (@ 25 °C, 0.1 mm) | Density (kg/m3) |
---|---|---|---|---|
Value | 100 | 48.6 | 63 | 1.03 |
Standard | ASTM D113 | ASTM D36 | ASTM D5 | ASTM D70 |
Sample No. | NPs Additives | Aging Process | Sample No. | Additives | Aging Process |
---|---|---|---|---|---|
S1 | - | Unaged | S9 | - | 6 d UV |
S2 | 0.1 % wt NPs | Unaged | S10 | 0.1 % wt NPs | 6 d UV |
S3 | 0.2 % wt NPs | Unaged | S11 | 0.2 % wt NPs | 6 d UV |
S4 | 0.3 % wt NPs | Unaged | S12 | 0.3 % wt NPs | 6 d UV |
S5 | - | RTFO | S13 | - | 12 d UV |
S6 | 0.1 % wt NPs | RTFO | S14 | 0.1 % wt NPs | 12 d UV |
S7 | 0.2 % wt NPs | RTFO | S15 | 0.2 % wt NPs | 12 d UV |
S8 | 0.3 % wt NPs | RTFO | S16 | 0.3 % wt NPs | 12 d UV |
Threshold Temperatures (°C) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before Aging (G*/sin δ = 1 kPa) | After Aging (G*/sin δ = 2.2 kPa) | ||||||||||||||
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |
72.8 | 72.3 | 72.7 | 72.8 | 73.0 | 72.8 | 72.9 | 73.1 | 73.9 | 73.1 | 73.8 | 73.2 | 74.8 | 73.4 | 74.3 | 73.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheraghian, G.; Wistuba, M.P. Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. Nanomaterials 2021, 11, 454. https://doi.org/10.3390/nano11020454
Cheraghian G, Wistuba MP. Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. Nanomaterials. 2021; 11(2):454. https://doi.org/10.3390/nano11020454
Chicago/Turabian StyleCheraghian, Goshtasp, and Michael P. Wistuba. 2021. "Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen" Nanomaterials 11, no. 2: 454. https://doi.org/10.3390/nano11020454
APA StyleCheraghian, G., & Wistuba, M. P. (2021). Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. Nanomaterials, 11(2), 454. https://doi.org/10.3390/nano11020454