Fermi-Level Tuning of G-Doped Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Yang, S.; Xue, C.; Wang, L.; Liang, Z.; Zhang, L.; Wang, Y.; Wu, Y.; Tai, R. The Recent Developments of soft X-ray interference lithography in SSRF. Int. J. Extrem. Manuf. 2020, 2, 012005. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhu, X.; Duan, X.; Pan, A. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev. 2018, 47, 7504. [Google Scholar] [CrossRef]
- Blumenstein, A.; Martin, E.; Garcia, M.E.; Rethfeld, B.; Simon, P.; Ihlemann, J.; Ivanov, D.S. Formation of Periodic Nanoridge Patterns by Ultrashort Single Pulse UV Laser Irradiation of Gold. Nanomaterials 2020, 10, 1998. [Google Scholar] [CrossRef] [PubMed]
- Tavkhelidze, A. Geometry-induced electron doping in periodic semiconductor nanostructures. Phys. E 2014, 60, 4. [Google Scholar] [CrossRef] [Green Version]
- Tavkhelidze, A.; Jangidze, L.; Mebonia, M.; Piotrowski, K.; Więckowski, J.; Taliashvili, Z.; Skhiladze, G.; Nadaraia, L. Geometry-induced quantum effects in periodic nanostructures. Phys. Staus. Solidi A 2017, 214, 1700334. [Google Scholar] [CrossRef]
- Yuan, G.D.; Zhou, Y.B.; Guo, C.S.; Zhang, W.J.; Tang, Y.B.; Li, Y.Q.; Chen, Z.H.; He, Z.B.; Zhang, X.J.; Wang, P.F.; et al. Tunable Electrical Properties of Silicon Nanowires via Surface-Ambient Chemistry. ASC Nano 2010, 4, 3045. [Google Scholar] [CrossRef]
- Tavkhelidze, A. Large enhancement of the thermoelectric figure of merit in a ridged quantum well. Nanotechnology 2009, 20, 405401. [Google Scholar] [CrossRef]
- Gadea, G.; Patios, M.; Murata, Á.; Tarancón, A. Silicon Based Nanostructures for Integrated Thermoelectric Generators. J. Phys. D Appl. Phys. 2018, 51, 423001. [Google Scholar] [CrossRef]
- Bayramov, A.; Alizade, E.; Mammadov, S.; Tavkhelidze, A.; Mamedov, N.; Aliyeva, Y.; Ahmedova, K.; Asadullayeva, S.; Jangidze, L.; Skhiladze, G. Optical properties of surface grated Si-based multilayer structure. J. Vac. Sci. Technol. B 2019, 37, 061807. [Google Scholar] [CrossRef]
- Safdar, A.; Wang, Y.; Reardon, C.; Li, J.; de Arruda, G.S.; Martins, A.; Martins, E.R.; Krauss, T.F. Interplay Between Optical and Electrical Properties of Nanostructured Surfaces in Crystalline silicon Solar Cells. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Tavkhelidze, A.N. Nanostructured electrodes for thermionic and thermo-tunnel devices. J. Appl. Phys. 2010, 108, 044313. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Chen, Q.; Peng, L. Thermionic electron emission from single carbon nanostructures and its applications in vacuum nanoelectronics. MRS Bull. 2017, 42, 493. [Google Scholar] [CrossRef]
- Tavkhelidze, A.; Grabecki, G.; Jangidze, L.; Yahniuk, I.; Taliashvili, Z.; Taliashvili, B. Negative Magnetoresistance in Si Nanograting Layers. Phys. Status Solidi A 2019, 216, 1800693. [Google Scholar] [CrossRef]
- Kakulia, D.; Tavkhelidze, A.; Gogoberidze, V.; Mebonia, M. Density of quantum states in quasi-1D layers. Phys. E 2016, 78, 49. [Google Scholar] [CrossRef] [Green Version]
- Luchenko, A.I.; Melnichenko, N.; Svezhentsova, K.V. Local Electronic Properties of the Surface of the Nanostructured Silicon Layers. In Proceedings of the 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 19–21 April 2016; p. 43. [Google Scholar]
- Medvid, A.; Onufrijevs, P.; Jarimaviciute-Gudaitiene, R.; Dauksta, E.; Prosycevas, I. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals. Nanoscale Res. Lett. 2013, 8, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polisski, G.; Kovalev, D.; Dollinger, D.; Sulima, D.; Koch, K. Boron in mesoporous Si—Where have all the carriers gone? Phys. B 1999, 273, 951. [Google Scholar] [CrossRef]
- Kashima, N.; Nakamura, T. Emerging Functions of Nanostructured Porous Silicon—With a Focus on the Emissive Properties of Photons, Electrons, and Ultrasound. Front. Chem. 2019, 7, 273. [Google Scholar]
- Mamedov, H.M.; Kukevecz, A.; Konya, Z.; Kordas, K.; Shah, S.I.; Mamedov, V.U.; Ahmedova, K.M.; Mamedova, V.J.; Rzaev, R.M.S.; Shamilova, A.; et al. Electrican and Photoelectrical Characteristics of c-Si/Porous –Si/CdS Heterojunctions. Russ. Phys. J. 2018, 61, 1660. [Google Scholar] [CrossRef] [Green Version]
- Cubero, A.; Martínez, E.; Angurel, L.A.; de la Fuente, G.F.; Navarro, R.; Legall, H.; Krüger, J.; Bonse, J. Surface Superconductivity Changes of Niobium Sheets by Femtosecond Laser-Induced Periodic Nanostructures. Nanomaterials 2020, 10, 2525. [Google Scholar] [CrossRef]
- Mortazavi, S.; Mollabashi, M.; Barri, R.; Gundlach, L.; Jones, K.; Xiao, J.Q.; Oplia, R.L.; Shah, S.I. Ti:Sapphire laser irradiation of graphene oxide film in order to tune its structural, chemical and electrical properties: Patterning and characterizations. Appl. Surf. Sci. 2020, 500, 144053. [Google Scholar] [CrossRef]
- Katz, E.A. Geometrical Analysis of Radiolaria and Fullerene Structures. Math. Intell. 2014, 36, 34–36. [Google Scholar] [CrossRef]
- Mamedov, N.; Tavkhelidze, A.; Bayramov, A.; Akhmedova, K.; Aliyeva, Y.; Eyyubov, G.; Jangidze, L.; Skhiladze, G. Spectroscopic planar diffraction ellipsometry of Si-based multilayer structure with subwavelength grating. Phys. Status Solidi C 2017, 14, 1700092. [Google Scholar]
- Tavkhelidze, A.; Jangidze, L.; Skhiladze, G. G-doping based nanostructured p-p(v) junction. Mater. Res. Express 2019, 6, 075049. [Google Scholar] [CrossRef] [Green Version]
- Tavkhelidze, A. G-doping junction-formation mechanism. Semicond. Sci. Technol. 2020, 35, 075005. [Google Scholar] [CrossRef]
- Huber, S.; Wicinski, M.; Hassel, A.W. Suitability of Various Materials for Probes in Scanning Kelvin Probe Measurements. Phys. Status Solidi A 2018, 215, 1700952. [Google Scholar] [CrossRef]
- Wilcox, R.R. Fundamentals of Modern Statistical Methods; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; Wiley Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ephrath, L.M.; Bennett, R.S. RIE Contamination of Etched Silicon Surfaces. J. Electrochem. Soc. 1982, 129, 1822. [Google Scholar] [CrossRef]
- Tavkhelidze, A.; Bibilashvili, A.; Jangidze, L.; Shimkunas, A.; Mauger, P.; Rempfer, G.F.; Almaraz, L.; Dixon, T.; Kordesch, M.E.; Katan, N.; et al. Observation of Quantum Interference Effect in Solids. J. Vac. Sci. Technol. B 2006, 24, 1413. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fan, J.; Huang, Q.; Zhu, J.; Zhao, Y.; Li, M.; Wu, Y.; Huang, R. Voltage-Controlled Magnetoresistance in Silicon Nanowire Transistors. Sci. Rep. 2018, 8, 15194. [Google Scholar] [CrossRef] [PubMed]
Substrate Type | p | n | p+ | n+ |
---|---|---|---|---|
Substrate resistivity [Ω × cm] | 1–10 | 1.7–2 | 0.044 | 0.013 |
Substrate carrier concentration [cm−3] | 1.5 × 1016 –1.5 × 1015 | 3 × 1015 | 1 × 1018 | 3 × 1018 |
SD for a = 10 nm [eV] | 1.6 × 10−1 | 3.1 × 10−2 | 2.7 × 10−2 | 2.1 × 10−2 |
SD for a = 20 nm [eV] | 1.2 × 10−1 | 3.5 × 10−2 | 1.7 × 10−2 | 2.7 × 10−2 |
SD for a = 30 nm [eV] | 5.8 × 10−2 | 3.5 × 10−2 | 2.5 × 10−2 | 3.0 × 10−2 |
SD for a = 30 nm [eV] | 5.8 × 10−2 | 3.5 × 10−2 | 2.5 × 10−2 | 3.0 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavkhelidze, A.; Bibilashvili, A.; Jangidze, L.; Gorji, N.E. Fermi-Level Tuning of G-Doped Layers. Nanomaterials 2021, 11, 505. https://doi.org/10.3390/nano11020505
Tavkhelidze A, Bibilashvili A, Jangidze L, Gorji NE. Fermi-Level Tuning of G-Doped Layers. Nanomaterials. 2021; 11(2):505. https://doi.org/10.3390/nano11020505
Chicago/Turabian StyleTavkhelidze, Avto, Amiran Bibilashvili, Larissa Jangidze, and Nima E. Gorji. 2021. "Fermi-Level Tuning of G-Doped Layers" Nanomaterials 11, no. 2: 505. https://doi.org/10.3390/nano11020505
APA StyleTavkhelidze, A., Bibilashvili, A., Jangidze, L., & Gorji, N. E. (2021). Fermi-Level Tuning of G-Doped Layers. Nanomaterials, 11(2), 505. https://doi.org/10.3390/nano11020505