Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Huebert, T.; Banach, U. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrogen Energy 2010, 35, 373–384. [Google Scholar] [CrossRef]
- Comini, E.; Aglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, S.; Fei, T.; Liu, S.; Zhang, T. Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens. 2019, 4, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiong, Y.; Li, Y.; Cui, P.; Guo, S.; Chen, W.; Tang, Z.; Yan, Z.; Zhang, Z. Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt-TiO2 nanocomposite ceramics. Int. J. Hydrogen Energy 2016, 41, 3307–3312. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, Z.; Wang, Y.; Hu, Y.; Gu, H.; Li, Y.; Chan, H.; Chen, W. Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering. J. Adv. Ceram. 2015, 4, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Cai, D.; Liu, Y.; Wang, D.; Wang, L.; Wang, Y.; Li, H.; Li, Q.; Wang, T. Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators B 2014, 193, 28–34. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, M.; Zhang, M.; Qiu, L.; Liu, Y.; Zhang, W.; Zhang, Y.; Hu, J.; Wu, G. Flexible and highly sensitive humidity sensor based on sandwich-like Ag/Fe3O4 nanowires composite for multiple dynamic monitoring. Nanomaterials 2019, 9, 1399. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, J.; Guo, X.; Wang, S.; Wu, S. Core-shell α-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties. RSC Adv. 2012, 2, 1650–1655. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Zhang, L.; Xi, R.; Huang, H.; Zhang, S.; Pan, G. Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing. J. Alloys Compd. 2019, 790, 363–369. [Google Scholar] [CrossRef]
- Li, W.; Chen, R.; Qi, W.; Cai, L.; Sun, Y.; Sun, M.; Li, C.; Yang, X.; Xiang, L.; Xie, D. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 2019, 4, 2809–2818. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Dong, T.; Jia, C.; Yang, P. Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet. Sens. Actuators B 2019, 288, 1–11. [Google Scholar] [CrossRef]
- Yang, C.; Kou, J.; Fan, H.; Tian, Z.; Kong, W.; Ju, S. Facile and versatile sol-gel strategy for the preparation of a High-Loaded ZnO/SiO2 adsorbent for room-temperature H2S removal. Langmuir 2019, 35, 7759–7768. [Google Scholar] [CrossRef] [PubMed]
- Vallejos, S.; Gracia, I.; Pizurova, N.; Figueras, E.; Cechal, J.; Hubalek, J.; Cane, C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B 2019, 301, 127054. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Yang, Y.; Dong, X. Fabrication of 3D ordered mesoporous ball-flower structures ZnO material with the excellent gas sensitive property. Sens. Actuators B 2019, 300, 127050. [Google Scholar] [CrossRef]
- Song, C.; Wu, G.; Sun, B.; Xiong, Y.; Zhu, S.; Hu, Y.; Gu, H.; Wang, Y.; Chen, W. Pt-WO3 porous composite ceramics outstanding for sensing low concentrations of hydrogen in air at room temperature. Int. J. Hydrogen Energy 2017, 42, 6420–6424. [Google Scholar] [CrossRef]
- Li, P.; Xiong, Z.; Zhu, S.; Wang, M.; Hu, Y.; Gu, H.; Wang, Y.; Chen, P. Singular room-temperature hydrogen sensing characteristics with ultrafast recovery of Pt-Nb2O5 porous composite ceramics. Int. J. Hydrogen Energy 2017, 42, 30186–30192. [Google Scholar] [CrossRef]
- Ozturk, S.; Kilinc, N.; Torun, I.; Kosemen, A.; Sahin, Y.; Ozturk, Z. Hydrogen sensing properties of ZnO nanorods: Effects of annealing, temperature and electrode structure. Int. J. Hydrogen Energy 2014, 39, 5191–5201. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Hu, Y.; Cai, Y.; Huang, R.; Li, X.; Huang, Z.; Lan, Z.; Chen, W.; Gu, H. Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: Experimental and theoretical studies. Sens. Actuators B 2018, 260, 21–32. [Google Scholar] [CrossRef]
- Miller, D.; Akbar, S.; Morris, P. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B 2015, 211, 569. [Google Scholar] [CrossRef]
- Tiemann, M. Porous metal oxides as gas sensors. Chem. Eur. J. 2007, 13, 8376. [Google Scholar] [CrossRef]
- Kamble, V.; Umarji, A. Analyzing the kinetic response of tin oxide-carbon and tin oxide-CNT composites gas sensors for alcohols detection. AIP Adv. 2015, 5, 037138. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Li, Q.; Liu, H.; Li, Y. A review of recent developments in tin dioxide composites for gas sensing application. J. Ind. Eng. Chem. 2016, 44, 1–22. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, W.; Li, Y.; Cui, P.; Guo, S.; Chen, W.; Tang, Z.; Yan, Z.; Zhang, Z. Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 2016, 9, 3528–3535. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Li, P.; Huang, Y.; Cheng, L.; Hu, Y.; Tang, Z.; Chen, W. Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms. Nanomaterials 2021, 11, 504. https://doi.org/10.3390/nano11020504
Liu M, Li P, Huang Y, Cheng L, Hu Y, Tang Z, Chen W. Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms. Nanomaterials. 2021; 11(2):504. https://doi.org/10.3390/nano11020504
Chicago/Turabian StyleLiu, Ming, Pengcheng Li, Yong Huang, Liang Cheng, Yongming Hu, Zilong Tang, and Wanping Chen. 2021. "Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms" Nanomaterials 11, no. 2: 504. https://doi.org/10.3390/nano11020504
APA StyleLiu, M., Li, P., Huang, Y., Cheng, L., Hu, Y., Tang, Z., & Chen, W. (2021). Room-Temperature Hydrogen-Sensing Capabilities of Pt-SnO2 and Pt-ZnO Composite Nanoceramics Occur via Two Different Mechanisms. Nanomaterials, 11(2), 504. https://doi.org/10.3390/nano11020504