Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- House, R.A.; Bruce, P.G. Lightning Fast Conduction. Nat. Energy 2020, 5, 191–192. [Google Scholar] [CrossRef]
- Yu, X.; Deng, J.; Yang, X.; Li, J.; Huang, Z.-H.; Li, B.; Kang, F. A Dual-Carbon-Anchoring Strategy to Fabricate Flexible LiMn2O4 Cathode for Advanced Lithium-Ion Batteries with High Areal Capacity. Nano Energy 2020, 67, 104256. [Google Scholar] [CrossRef]
- Shin, M.; Song, W.-J.; Han, J.-G.; Hwang, C.; Lee, S.; Yoo, S.; Park, S.; Song, H.-K.; Yoo, S.; Choi, N.-S.; et al. Metamorphosis of Seaweeds into Multitalented Materials for Energy Storage Applications. Adv. Energy Mater. 2019, 9, 1900570. [Google Scholar] [CrossRef]
- Jeong, M.; Lee, M.-J.; Cho, J.; Lee, S. Surface Mn Oxidation State Controlled Spinel LiMn2O4 as a Cathode Material for High-Energy Li-Ion Batteries. Adv. Energy Mater. 2015, 5, 1500440. [Google Scholar] [CrossRef]
- Jiang, C.; Tang, Z.; Wang, S.; Zhang, Z. A Truncated Octahedral Spinel LiMn2O4 as High-Performance Cathode Material for Ultrafast and Long-Life Lithium-Ion Batteries. J. Power Sources 2017, 357, 144–148. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, G.; Jeong, M.; Lee, M.-J.; Kang, K.; Cho, J. Hierarchical Surface Atomic Structure of a Manganese-Based Spinel Cathode for Lithium-Ion Batteries. J. Power Sources 2015, 54, 1153–1158. [Google Scholar]
- Cai, Z.; Ma, Y.; Huang, X.; Yan, X.; Yu, Z.; Zhang, S.; Song, G.; Xu, Y.; Wen, C.; Yang, W. High Electrochemical Stability Al-Doped Spinel LiMn2O4 Cathode Material for Li-Ion Batteries. J. Energy Storage 2020, 27, 101036. [Google Scholar] [CrossRef]
- Hou, Y.; Chang, K.; Tang, H.; Li, B.; Hou, Y.; Chang, Z. Drastic Enhancement in the Rate and Cyclic Behavior of LiMn2O4 Electrodes at Elevated Temperatures by Phosphorus Doping. Electrochim. Acta 2019, 319, 587–595. [Google Scholar] [CrossRef]
- Gao, Y.; Dahn, J.R. Synthesis and Characterization of Li1+XMn2-XO4 for Li-Ion Battery Applications. J. Electrochem. Soc. 1996, 143, 100–114. [Google Scholar] [CrossRef]
- Huang, J.; Yang, F.; Guo, Y.; Peng, C.; Bai, H.; Peng, J.; Guo, J. LiMgXMn2-XO4 (X ≤ 0.10) Cathode Materials with High Rate Performance Prepared by Molten-Salt Combustion at Low Temperature. Ceram. Int. 2015, 41, 9662–9667. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Tang, Y.; Xia, H.; Zeng, Y.; Qiao, L.; Zhu, Z.; Lv, Z.; Zhang, Y.; Ge, X.; et al. Lowering Charge Transfer Barrier of LiMn2O4 Via Nickel Surface Doping to Enhance Li+ Intercalation Kinetics at Subzero Temperatures. J. Am. Chem. Soc. 2019, 141, 14038–14042. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Liang, Y.; Cui, P.; Xiao, Z. Al-Doped LiMn2O4 Single Crystalline Nanorods with Enhanced Elevated-Temperature Electrochemical Performance Via a Template-Engaged Method as a Cathode Material for Lithium Ion Batteries. Rsc Adv. 2015, 5, 6372–6377. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, J.H.; Koh, T.Y.; Kim, M.H. Improved Cyclic Stability by Octahedral Co3+ Substitution in Spinel Lithium Manganese Oxide Thin-Film Cathode for Rechargeable Microbattery. Electrochim. Acta 2016, 200, 84–89. [Google Scholar] [CrossRef]
- Liu, H.; Tian, R.; Jiang, Y.; Tan, X.; Chen, J.; Zhang, L.; Guo, Y.; Wang, H.; Sun, L.; Chu, W. On the Drastically Improved Performance of Fe-Doped LiMn2O4 Nanoparticles Prepared by a Facile Solution-Gelation Route. Electrochim. Acta 2015, 180, 138–146. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, H.J.; Yoshio, M. New Findings: Structural Changes in LiAlXMn2-XO4. Electrochem. Commun. 2001, 3, 20–23. [Google Scholar] [CrossRef]
- Lee, E.-S.; Nam, K.-W.; Hu, E.; Manthiram, A. Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V. Chem. Mater. 2012, 24, 3610–3620. [Google Scholar] [CrossRef]
- He, G.; Li, Y.; Li, J.; Yang, Y. Spinel LiMn2-XTiXO4 (X=0.5, 0.8) with High Capacity and Enhanced Cycling Stability Synthesized by a Modified Sol-Gel Method. Solid-State Lett. 2010, 13, A19–A21. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Wu, X.; Li, Y.; Gong, Z.; Wen, W.; Lin, M.; Yang, J.; Yang, Y. Toward High Capacity and Stable Manganese-Spinel Electrode Materials: A Case Study of Ti-Substituted System. J. Power Sources 2014, 245, 570–578. [Google Scholar] [CrossRef]
- Chen, R.; Knapp, M.; Yavuz, M.; Heinzmann, R.; Wang, D.; Ren, S.; Trouillet, V.; Lebedkin, S.; Doyle, S.; Hahn, H.; et al. Reversible Li+ Storage in a LiMnTiO4 Spinel and Its Structural Transition Mechanisms. J. Phys. Chem. C 2014, 118, 12608–12616. [Google Scholar] [CrossRef]
- Lin, M.; Wang, S.H.; Gong, Z.L.; Huang, X.K.; Yang, Y. A Strategy to Improve Cyclic Performance of LiNi0.5Mn1.5O4 in a Wide Voltage Region by Ti-Doping. J. Electrochem. Soc. 2013, 160, A3036–A3040. [Google Scholar] [CrossRef]
- Kim, J.-H.; Pieczonka, N.P.W.; Lu, P.; Liu, Z.; Qiao, R.; Yang, W.; Tessema, M.M.; Sun, Y.-K.; Powell, B.R. In Situ Formation of a Cathode-Electrolyte Interface with Enhanced Stability by Titanium Substitution for High Voltage Spinel Lithium-Ion Batteries. Adv. Mater. Interfaces 2015, 2, 1500109. [Google Scholar] [CrossRef]
- Benedek, R.; Thackeray, M.M. Simulation of the Surface Structure of Lithium Manganese Oxide Spinel. Phys. Rev. B 2011, 83, 195439. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Aykol, M.; Wolverton, C. Surface Phase Diagram and Stability of (001) and (111) LiMn2O4 Spinel Oxides. Phys. Rev. B 2015, 92, 115411. [Google Scholar] [CrossRef] [Green Version]
- Warburton, R.E.; Iddir, H.; Curtiss, L.A.; Greeley, J. Thermodynamic Stability of Low- and High-Index Spinel LiMn2O4 Surface Terminations. ACS Appl. Mater. Interfaces 2016, 8, 11108–11121. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Park, J.; Lu, W. Electronic and Bonding Properties of LiMn2O4 Spinel with Different Surface Orientations and Doping Elements and Their Effects on Manganese Dissolution. J. Electrochem. Soc. 2016, 163, A1359–A1368. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.; Fosse, S.; Persson, K.A. Surface Structure and Equilibrium Particle Shape of the LiMn2O4 Spinel from First-Principles Calculations. Phys. Rev. B 2013, 87, 075322. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, C.Y.; Zeng, X.M.; Sljivancanin, Z.; Baldereschi, A. Oxidation States of Mn Atoms at Clean and Al2O3-Covered LiMn2O4 (001) Surfaces. J. Phys. Chem. C 2010, 114, 4756–4759. [Google Scholar] [CrossRef]
- Zhao, M.; Song, X.; Wang, F.; Dai, W.; Lu, X. Electrochemical Performance of Single Crystalline Spinel LiMn2O4 Nanowires in an Aqueous LiNO3 Solution. Electrochim. Acta 2011, 56, 5673–5678. [Google Scholar] [CrossRef]
- Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density. Nano Lett. 2009, 9, 1045–1051. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Chen, X.; Wu, H.; Zhang, Y. Mg2+ and Ti4+ Co-Doped Spinel LiMn2O4 as Lithium-Ion Battery Cathode. Chemistryselect 2019, 4, 9583–9589. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Y.; Zhang, C.; Zhang, Z.; Li, J. Electrochemical Properties of Tetravalent Ti-Doped Spinel LiMn2O4. J. Solid State Electrochem. 2011, 15, 1263–1269. [Google Scholar] [CrossRef]
- Wei, Y.J.; Yan, L.Y.; Wang, C.Z.; Xu, X.G.; Wu, F.; Chen, G. Effects of Ni Doping on MnO6 Octahedron in LiMn2O4. J. Phys. Chem. B 2004, 108, 18547–18551. [Google Scholar] [CrossRef]
- Prabu, M.; Reddy, M.V.; Selvasekarapandian, S.; Rao, G.V.S.; Chowdari, B.V.R. (Li, Al)-Co-Doped Spinel, Li(Li0.1Al0.1Mn1.8)O-4 as High Performance Cathode for Lithium Ion Batteries. Electrochim. Acta 2013, 88, 745–755. [Google Scholar] [CrossRef]
- Ram, P.; Singhal, R.; Choudhary, G.; Sharma, R.K. On the Key Role of Dy3+ in Spinel LiMn2O4 Cathodes for Li-Ion Rechargeable Batteries. J. Electroanal. Chem. 2017, 802, 94–99. [Google Scholar] [CrossRef]
- Hashem, A.M.; Abdel-Ghany, A.E.; Abuzeid, H.M.; El-Tawil, R.S.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. EDTA as Chelating Agent for Sol-Gel Synthesis of Spinel LiMn2O4 Cathode Material for Lithium Batteries. J. Alloys.Compd. 2018, 737, 758–766. [Google Scholar] [CrossRef]
- Huang, S.; Wu, H.; Chen, P.; Guo, Y.; Nie, B.; Chen, B.; Liu, H.; Zhang, Y. Facile PH-Mediated Synthesis of Morphology-Tunable MnCO3 and Their Transformation to Truncated Octahedral Spinel LiMn2O4 Cathode Materials for Superior Lithium Storage. J. Mater. Chem. A 2015, 3, 3633–3640. [Google Scholar] [CrossRef]
- Liu, H.; Kloepsch, R.; Wang, J.; Winter, M.; Li, J. Truncated Octahedral LiNi0.5Mn1.5O4 Cathode Material for Ultralong-Life Lithium-Ion Battery: Positive (100) Surfaces in High-Voltage Spinel System. J. Power Sources 2015, 300, 430–437. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Xiang, M.; Guo, J.; Bai, H.; Bai, W.; Liu, X. Effects of Crystal Structure and Plane Orientation on Lithium and Nickel Co-Doped Spinel Lithium Manganese Oxide for Long Cycle Life Lithium-Ion Batteries. J. Colloid Interface Sci. 2021, 585, 729–739. [Google Scholar] [CrossRef]
- Dong, S.; Wang, X.; Shen, L.; Li, H.; Wang, J.; Nie, P.; Wang, J.; Zhang, X. Trivalent Ti Self-Doped Li4Ti5O12: A High Performance Anode Material for Lithium-Ion Capacitors. J. Electroanal. Chem. 2015, 757, 1–7. [Google Scholar] [CrossRef]
- Ben, L.; Yu, H.; Chen, B.; Chen, Y.; Gong, Y.; Yang, X.; Gu, L.; Huang, X. Unusual Spinel-to-Layered Transformation in LiMn2O4 Cathode Explained by Electrochemical and Thermal Stability Investigation. ACS Appl. Mater. Interfaces 2017, 9, 35463–35475. [Google Scholar] [CrossRef]
- Tang, D.; Sun, Y.; Yang, Z.; Ben, L.; Gu, L.; Huang, X. Surface Structure Evolution of LiMn2O4 Cathode Material Upon Charge/Discharge. Chem. Mater. 2014, 26, 3535–3543. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Huang, R.; Ikuhara, Y.H.; Mizoguchi, T.; Findlay, S.D.; Kuwabara, A.; Fisher, C.A.J.; Moriwake, H.; Oki, H.; Hirayama, T.; Ikuhara, Y. Oxygen-Vacancy Ordering at Surfaces of Lithium Manganese(III,IV) Oxide Spinel Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 3053–3057. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, S.J.; Jesson, D.E. High-Resolution Z-Contrast Imaging of Crystals. Ultramicroscopy 1991, 37, 14–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Ben, L.; Yu, H.; Chen, Y.; Huang, X. Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al3+-Modified LiMn2O4 Cathode Material. ACS Appl. Mater. Interfaces 2018, 10, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Ben, L.; Sun, Y.; Wang, H.; Yang, Z.; Gu, L.; Yu, X.; Yang, X.-Q.; Zhao, H.; Yu, R.; et al. Insight into the Atomic Structure of High-Voltage Spinel LiNiO3Mn1.5O4 Cathode Material in the First Cycle. Chem. Mater. 2015, 27, 292–303. [Google Scholar] [CrossRef]
- Xiao, B.W.; Liu, H.; Liu, J.; Sun, Q.; Wang, B.; Kaliyappan, K.; Zhao, Y.; Banis, M.N.; Liu, Y.; Li, R.; et al. Nanoscale Manipulation of Spinel Lithium Nickel Manganese Oxide Surface by Multisite Ti Occupation as High-Performance Cathode. Adv. Mater. 2017, 29, 1703754. [Google Scholar] [CrossRef]
- Huang, M.R.; Lin, C.W.; Lu, H.Y. Crystallographic Facetting in Solid-State Reacted LiMn2O4 Spinel Powder. Appl. Surf. Sci. 2001, 177, 103–113. [Google Scholar] [CrossRef]
- Zhang, H.; May, B.M.; Serrano-Sevillano, J.; Casas-Cabanas, M.; Cabana, J.; Wang, C.; Zhou, G. Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes. Chem. Mater. 2018, 30, 692–699. [Google Scholar] [CrossRef]
- Gao, X.; Ikuhara, Y.H.; Fisher, C.A.J.; Huang, R.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Ikuhara, Y. Oxygen Loss and Surface Degradation During Electrochemical Cycling of Lithium-Ion Battery Cathode Material LiMn2O4. J. Mater. Chem. A 2019, 7, 8845–8854. [Google Scholar] [CrossRef]
- Gao, X.; Ikuhara, Y.H.; Fisher, C.A.J.; Moriwake, H.; Kuwabara, A.; Oki, H.; Kohama, K.; Yoshida, R.; Huang, R.; Ikuhara, Y. Structural Distortion and Compositional Gradients Adjacent to Epitaxial LiMn2O4 Thin Film Interfaces. Adv. Mater. Interfaces 2014, 1, 1400143. [Google Scholar] [CrossRef]
- Maunders, C.; Martin, B.E.; Wei, P.; Petric, A.; Botton, G.A. Investigation of the Electronic Structure of the Cubic Spinel Cu1.2Mn1.8O4 Using Electron Energy Loss Spectroscopy. Solid State Ion 2008, 179, 718–724. [Google Scholar] [CrossRef]
- Schmid, H.K.; Mader, W. Oxidation States of Mn and Fe in Various Compound Oxide Systems. Micron 2006, 37, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Livi, K.J.T.; Gaillot, A.-C.; Stone, A.T.; Veblen, D.R. Determination of Manganese Valence States in (Mn3+, Mn4+) Minerals by Electron Energy-Loss Spectroscopy. Am. Mineral. 2010, 95, 1741–1746. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Li, H.; Zheng, Y.; Lei, W.; Wang, Z.; Cheng, Y.; Qi, R.; Peng, H.; Lin, H.; Yue, F.; et al. Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles. Nanomaterials 2021, 11, 508. https://doi.org/10.3390/nano11020508
Xu W, Li H, Zheng Y, Lei W, Wang Z, Cheng Y, Qi R, Peng H, Lin H, Yue F, et al. Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles. Nanomaterials. 2021; 11(2):508. https://doi.org/10.3390/nano11020508
Chicago/Turabian StyleXu, Wangqiong, Hongkai Li, Yonghui Zheng, Weibin Lei, Zhenguo Wang, Yan Cheng, Ruijuan Qi, Hui Peng, Hechun Lin, Fangyu Yue, and et al. 2021. "Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles" Nanomaterials 11, no. 2: 508. https://doi.org/10.3390/nano11020508
APA StyleXu, W., Li, H., Zheng, Y., Lei, W., Wang, Z., Cheng, Y., Qi, R., Peng, H., Lin, H., Yue, F., & Huang, R. (2021). Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles. Nanomaterials, 11(2), 508. https://doi.org/10.3390/nano11020508