Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Nanocrystals
2.2. Characterization of GLIFOTAL TR with Nanocrystals and Nanocomposite
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Atomic Force Microscopy (AFM)
2.5. Enhancement Properties Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for Roundup® herbicide. Rev. Environ. Contam. Toxicol. 2000, 167, 35–120. [Google Scholar] [CrossRef]
- Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- Kujawa, M. Glyphosate. Environmental Health Criteria 159, 177 Seiten, 3 Abbildungen und 25 Tabellen; World Health Organization: Geneva, Switzerland, 1994; Volume 40, p. 166. [Google Scholar] [CrossRef]
- Tsui, M.T.K.; Chu, L.M. Environmental fate and non-target impact of glyphosate-based herbicide (Roundup®) in a subtropical wetland. Chemosphere 2008, 71, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000, 31, 117–165. [Google Scholar] [CrossRef] [Green Version]
- González-Martínez, M.Á.; Brun, E.M.; Puchades, R.; Maquieira, Á.; Ramsey, K.; Rubio, F. Glyphosate immunosensor. Application for water and soil analysis. Anal. Chem. 2005, 77, 4219–4227. [Google Scholar] [CrossRef]
- IARC. Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides—IARC. Available online: https://www.iarc.fr/news-events/iarc-monographs-volume-112-evaluation-of-five-organophosphate-insecticides-and-herbicides/ (accessed on 12 December 2020).
- Valle, A.L.; Mello, F.C.C.; Alves-Balvedi, R.P.; Rodrigues, L.P.; Goulart, L.R. Glyphosate detection: Methods, needs and challenges. Environ. Chem. Lett. 2019, 17, 291–317. [Google Scholar] [CrossRef]
- Poulsen, M.E.; Christensen, H.B.; Hermann, S.S. Proficiency test on incurred and spiked pesticide residues in cereals. Accredit. Qual. Assur. 2009, 14, 477–485. [Google Scholar] [CrossRef]
- Hance, R.J. Herbicide usage and soil properties. Plant. Soil 1976, 45, 291–293. [Google Scholar] [CrossRef]
- Thompson, D.G.; Cowell, J.E.; Daniels, R.J.; Staznik, B.; Macdonald, L.M. Liquid chromatographic method for quantitation of glyphosate and metabolite residues in organic and mineral soils, stream sediments, and hardwood foliage. J. Assoc. Off. Anal. Chem. 1989, 72, 355–360. [Google Scholar] [CrossRef]
- Rueppel, M.L.; Brightwell, B.B.; Schaefer, J.; Marvel, J.T. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 1977, 25, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Moraes, F.C.; Mascaro, L.H.; Machado, S.A.S.; Brett, C.M. Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis 2010, 22, 1586–1591. [Google Scholar] [CrossRef]
- Smith, P.H.; Hahn, F.E.; Hugi, A.; Raymond, K.N. Crystal structures of two salts of N-(phosphonomethyl)glycine and equilibria with hydrogen and bicarbonate ions. Inorg. Chem. 1989, 28, 2052–2061. [Google Scholar] [CrossRef]
- Clarke, E.T.; Rudolf, P.R.; Martell, A.E.; Clearfield, A. Structural investigation of the Cu(II) chelate of N-phosphonomethylglycine. X-ray crystal structure of Cu(II) [O2CCH2NHCH2PO3]·Na(H2O)3.5. Inorganica Chim. Acta 1989, 164, 59–63. [Google Scholar] [CrossRef]
- Madsen, H.E.L.; Christensen, H.H.; Gottlieb-Petersen, C.; Andresen, A.F.; Smidsrød, O.; Pontchour, C.-O.; Phavanantha, P.; Pramatus, S.; Cyvin, B.N.; Cyvin, S.J. Stability Constants of Copper(II), Zinc, Manganese(II), Calcium, and Magnesium Complexes of N-(Phosphonomethyl)glycine (Glyphosate). Acta Chem. Scand. 1978, 32, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Caetano, M.S.; Ramalho, T.C.; Botrel, D.F.; Da Cunha, E.F.; De Mello, W.C. Understanding the inactivation process of organophosphorus herbicides: A DFT study of glyphosate metallic complexes with Zn2+, Ca2+, Mg2+, Cu2+, Co3+, Fe3+, Cr3+, and Al3+. Int. J. Quantum Chem. 2012, 112, 2752–2762. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z. Zinc in soils and crop nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 335–375. ISBN 081381992X. [Google Scholar]
- Singh, M.S.; Abrol, I.P. Transformation and availability of zinc in alkali soils. Fert News 1986, 37, 17–27. [Google Scholar]
- Polavarapu, L.; Pérez-Juste, J.; Xu, Q.-H.; Liz-Marzán, L.M. Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J. Mater. Chem. C 2014, 2, 7460–7476. [Google Scholar] [CrossRef]
- Rawat, K.A.; Majithiya, R.P.; Rohit, J.V.; Basu, H.; Singhal, R.K.; Kailasa, S.K. Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Adv. 2016, 6, 47741–47752. [Google Scholar] [CrossRef]
- De Góes, R.E.; Muller, M.; Fabris, J.L. Spectroscopic detection of glyphosate in water assisted by laser-ablated silver nanoparticles. Sensors 2017, 17, 954. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Reis, É.; Rica, D.M.; De Rezende, A.A.A.; Santos, D.V.; De Oliveria, P.F.; Nicolella, H.D.; Tavares, D.C.; Silva, A.C.A.; Dantas, N.O.; Spanó, M.A. Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem. Toxicol. 2015, 84, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Morais, P.V.; Gomes, V.F.; Silva, A.C.A.; Dantas, N.O.; Schöning, M.J.; Siqueira, J.R. Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J. Mater. Sci. 2017, 52, 12314–12325. [Google Scholar] [CrossRef]
- Fonseca, B.B.; Silva, P.L.A.P.A.; Silva, A.C.A.; Dantas, N.O.; De Paula, A.T.; Olivieri, O.C.L.; Beletti, M.E.; Rossi, D.A.; Goulart, L.R. Nanocomposite of Ag-Doped ZnO and AgO nanocrystals as a preventive measure to control biofilm formation in eggshell and salmonella spp. Entry into eggs. Front. Microbiol. 2019, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantas, N.O.; dos Santos Silva, A.; Silva, A.C.A.; de Freitas Neto, E.S. Atomic and magnetic force microscopy of semiconductor and semimagnetic nanocrystals grown in colloidal solutions and glass matrices. Opt. Imaging Technol. Methods Appl. 2012, 109–132. [Google Scholar]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.R.H.; Adil, S.F.; Assal, M.; Ali, R.; Al-Warthan, A.A. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem. 2013, 25, 3405–3409. [Google Scholar] [CrossRef]
- Ibáñez, M.; Pozo, Ó.J.; Sancho, J.V.; López, F.J.; Hernández, F. Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 2006, 1134, 51–55. [Google Scholar] [CrossRef]
- De Llasera, M.G.; Gómez-Almaraz, L.; Vera-Avila, L.; Peña-Alvarez, A. Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. J. Chromatogr. A 2005, 1093, 139–146. [Google Scholar] [CrossRef]
- Cuhra, M.; Bøhn, T.; Cuhra, P. Glyphosate: Too much of a good thing? Front. Environ. Sci. 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Winfield, T.W.; Bashe, W.J. Determination of Glyphosate in Drinking Water by Direct-Aqueous-Injection HPLC. Post-Column Derivatization, and Fluorescence Detection: Test Method; United States Environmental Protection Agency: Washington, DC, USA, 1990; p. 547.
- Fagan, J.; Antoniou, M.; Habib, M.; Howard, C.V.; Jennings, R.C.; Leifert, C.; Nodari, R.O.; Robinson, C.J.; Fagan, J. Teratogenic effects of glyphosate-based herbicides: Divergence of regulatory decisions from scientific evidence. J. Environ. Anal. Toxicol. 2012, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Eker, S.; Ozturk, L.; Yazici, A.; Erenoglu, B.; Römheld, V.; Cakmak, I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) Plants. J. Agric. Food Chem. 2006, 54, 10019–10025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scroggs, D.; Stewart, A.; Miller, D.; Leonard, B.; Griffin, J.; Blouin, D. Response of weeds to zinc-glyphosate mixtures. La. Agric. 2008, Summer, 51. [Google Scholar]
- Bernards, M.L.; Thelen, K.D.; Penner, D.; Muthukumaran, R.B.; McCracken, J.L. Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci. 2005, 53, 787–794. [Google Scholar] [CrossRef]
- França, A.; Freitas, M.; D’Antonino, L.; Fialho, C.; Silva, A.; Reis, M.; Ronchi, C. Nutrient content in arabica coffee cultivars subjected to glyphosate drift. Planta Daninha 2010, 28, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, D.; Sun, R.-J.; Cang, L.; Hao, X.-Z. Cosorption of zinc and glyphosate on two soils with different characteristics. J. Hazard. Mater. 2006, 137, 76–82. [Google Scholar] [CrossRef]
- Ozturk, L.; Yazıcı, M.A.; Eker, S.; Gökmen, Ö.Ö.; Römheld, V.; Cakmak, I. Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol. 2008, 177, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Eurípedes Malavolta Manual de Nutrição Mineral de Plantas—Malavolta, 1st ed.; Agronômica Ceres: Ouro Fino, MG, Brazil, 2006; Volume 1.
- Franzen, D.W.; O’Barr, J.H.; Zollinger, R.K. Interaction of a foliar application of iron HEDTA and three postemergence broadleaf herbicides with soybeans stressed from chlorosis. J. Plant. Nutr. 2003, 26, 2365–2374. [Google Scholar] [CrossRef]
- Neumann, G.; Kohls, S.; Landsberg, E.; Stock-oliveira Souza, K.; Yamada, T.; Römheld, V. Relevance of glyphosate transfer to non-target plants via the rhizosphere. J. Plant Dis. Prot. 2006, 963–969. [Google Scholar]
- Santos, L.D.T.; de Siqueira, C.H.; de Barros, N.F.; Ferreira, F.A.; Ferreira, L.R.; Machado, A.F.L. Growth and concentration of nutrients in the aerial tissue of eucalypt under glyphosate drift effect. CERNE 2007, 13, 347–352. [Google Scholar]
- Bozorgzadeh, S.; Haghighi, B. Enhanced electrochemiluminescence of ZnO nanoparticles decorated on multiwalled carbon nanotubes in the presence of peroxydisulfate. Microchim. Acta 2016, 183, 1487–1492. [Google Scholar] [CrossRef]
- Bakar, N.A.; Salleh, M.M.; Umar, A.A.; Yahaya, M. The detection of pesticides in water using ZnCdSe quantum dot films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 25011. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.J.; Moye, H.A. Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils. J. Agric. Food Chem. 1988, 36, 486–491. [Google Scholar] [CrossRef]
- Sancho, J.V.; López, F.J.; Hernández, F.H.; Hogendoorn, E.; Van Zoonen, P. Rapid determination of glufosinate in environmental water samples using 9-fluorenylmethoxycarbonyl precolumn derivatization, large-volume injection and coupled-column liquid chromatography. J. Chromatogr. A 1994, 678, 59–67. [Google Scholar] [CrossRef]
- Nedelkoska, T.; Low, G.C. High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Anal. Chim. Acta 2004, 511, 145–153. [Google Scholar] [CrossRef]
- Hidalgo, C.; Rios, C.; Hidalgo, M.; Salvadó, V.; Sancho, J.V.; Hernández, F.H. Improved coupled-column liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. J. Chromatogr. A 2004, 1035, 153–157. [Google Scholar] [CrossRef]
- Kudzin, Z.H.; Gralak, D.K.; Drabowicz, J.; Luczak, J. Novel approach for the simultaneous analysis of glyphosate and its metabolites. J. Chromatogr. A 2002, 947, 129–141. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, R. PVP capped silver nanocubes assisted removal of glyphosate from water—A photoluminescence study. J. Hazard. Mater. 2017, 339, 54–62. [Google Scholar] [CrossRef]
- Muneer, M.; Boxall, C. Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide. Int. J. Photoenergy 2008, 2008, 197346. [Google Scholar] [CrossRef] [Green Version]
- McConnell, J.S.; Hossner, L.R. pH-Dependent adsorption isotherms of glyphosate. J. Agric. Food Chem. 1985, 33, 1075–1078. [Google Scholar] [CrossRef]
- McConnell, J.S.; Hossner, L.R. Erratum or corrections: Ph-Dependent adsorption isotherms of glyphosate. J. Agric. Food Chem. 1991, 39, 824. [Google Scholar] [CrossRef]
- Sheals, J.; Granström, M.; Sjöberg, S.; Persson, P. Coadsorption of Cu(II) and glyphosate at the water–goethite (α-FeOOH) interface: Molecular structures from FTIR and EXAFS measurements. J. Colloid Interface Sci. 2003, 262, 38–47. [Google Scholar] [CrossRef]
- Sheals, J.; Sjöberg, S.; Persson, P. Adsorption of glyphosate on goethite: Molecular characterization of surface complexes. Environ. Sci. Technol. 2002, 36, 3090–3095. [Google Scholar] [CrossRef] [PubMed]
- Dideriksen, K.; Stipp, S. The adsorption of glyphosate and phosphate to goethite: A molecular-scale atomic force microscopy study. Geochim. Cosmochim. Acta 2003, 67, 3313–3327. [Google Scholar] [CrossRef]
- Morillo, E.; Undabeytia, T.; Maqueda, C.; Ramos, B.A. Glyphosate adsorption on soils of different characteristics. Influence of copper addition. Chemosphere 2000, 40, 103–107. [Google Scholar] [CrossRef]
- Subramaniam, V.; Hoggard, P.E. Metal complexes of glyphosate. J. Agric. Food Chem. 1988, 36, 1326–1329. [Google Scholar] [CrossRef]
- Chenier, P.J. Survey of Industrial Chemistry; Springer: New York, NY, USA, 2002. [Google Scholar]
- Peixoto, M.M.; Bauerfeldt, G.F.; Herbst, M.H.; Pereira, M.S.; Da Silva, C.O. Study of the stepwise deprotonation reactions of glyphosate and the corresponding pKaValues in aqueous solution. J. Phys. Chem. A 2015, 119, 5241–5249. [Google Scholar] [CrossRef]
- Liu, B.; Dong, L.; Yu, Q.; Li, X.; Wu, F.; Tan, Z.; Luo, S. Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: Potentiometry, calorimetry and NMR spectroscopy. J. Phys. Chem. B 2016, 120, 2132–2137. [Google Scholar] [CrossRef]
- Pollegioni, L.; Schonbrunn, E.; Siehl, D. Molecular basis of glyphosate resistance—Different approaches through protein engineering. FEBS J. 2011, 278, 2753–2766. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K. Plant amino acids: Biochemistry and biotechnology. In Books in Soils, Plants, and the Environment; CRC Press: New York, NY, USA, 1998; p. 648. ISBN 9780824702045. [Google Scholar]
- Stone, A.T.; Knight, M.A.; Nowack, B. Speciation and chemical reactions of phosphonate chelating agents in aqueous media. ACS Symp. Ser. 2002, 806, 59–94. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle, A.L.; Silva, A.C.A.; Dantas, N.O.; Sabino-Silva, R.; Melo, F.C.C.; Moreira, C.S.; Oliveira, G.S.; Rodrigues, L.P.; Goulart, L.R. Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection. Nanomaterials 2021, 11, 509. https://doi.org/10.3390/nano11020509
Valle AL, Silva ACA, Dantas NO, Sabino-Silva R, Melo FCC, Moreira CS, Oliveira GS, Rodrigues LP, Goulart LR. Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection. Nanomaterials. 2021; 11(2):509. https://doi.org/10.3390/nano11020509
Chicago/Turabian StyleValle, Anderson L., Anielle C. A. Silva, Noelio O. Dantas, Robinson Sabino-Silva, Francielli C. C. Melo, Cleumar S. Moreira, Guedmiller S. Oliveira, Luciano P. Rodrigues, and Luiz R. Goulart. 2021. "Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection" Nanomaterials 11, no. 2: 509. https://doi.org/10.3390/nano11020509
APA StyleValle, A. L., Silva, A. C. A., Dantas, N. O., Sabino-Silva, R., Melo, F. C. C., Moreira, C. S., Oliveira, G. S., Rodrigues, L. P., & Goulart, L. R. (2021). Application of ZnO Nanocrystals as a Surface-Enhancer FTIR for Glyphosate Detection. Nanomaterials, 11(2), 509. https://doi.org/10.3390/nano11020509