Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of Expression Vector for Bifunctional Fusion Protein, Maltose Binding Protein-Tagged Silica Binding Peptide (MBP-SBP)
2.3. Expression and Purification of MBP-SBP
2.4. Binding Assay of MBP-SBP for Food Additive SiO2
2.5. Preparation and Characterization of Starch Magnetic Microbeads Functionalized with SBP (SBP-MBP@SMMBs)
2.6. Magnetic Separation of SiO2 by SBP-MBP@SMMBs
2.7. Characterization of Separated Silica Nanoparticles
3. Results and Discussion
3.1. Preparation of Silica-Specific Ligand Protein, MBP-SBP
3.2. Preparation and Characterization of SBP-MBP@SMMBs
3.3. Magnetic Separation of SiO2 in the Presence of Food Components
3.4. Extraction and Characterization of Food Additive SiO2 from Commercial Processed Foods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018, 1, e05088. [Google Scholar]
- Martin, K. The chemistry of silica and its potential health benefits. J. Nutr. Health Aging 2007, 11, 94. [Google Scholar] [PubMed]
- Fruijtier-Pölloth, C. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch. Toxicol. 2016, 90, 2885–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, T.; Schneider, S.; Wolterbeek, A.; van de Sandt, H.; Landsiedel, R.; van Ravenzwaay, B. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats. Reprod. Toxicol. 2015, 56, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Tahiri, N.; Khouchaf, L.; Elaatmani, M.; Louarn, G.; Zegzouti, A.; Daoud, M. Study of the thermal treatment of SiO2 aggregate. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2014; p. 012002. [Google Scholar]
- Gorrepati, E.A.; Wongthahan, P.; Raha, S.; Fogler, H.S. Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect. Langmuir 2010, 26, 10467–10474. [Google Scholar] [CrossRef]
- Parida, S.K.; Dash, S.; Patel, S.; Mishra, B. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110. [Google Scholar] [CrossRef]
- Limo, M.J.; Sola-Rabada, A.; Boix, E.; Thota, V.; Westcott, Z.C.; Puddu, V.; Perry, C.C. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev. 2018, 118, 11118–11193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, O.; Kurut, A.; Skepö, M. Adsorption of β-casein to hydrophilic silica surfaces. Effect of pH and electrolyte. Food Hydrocolloids 2014, 36, 332–338. [Google Scholar] [CrossRef]
- Wiemann, M.; Vennemann, A.; Stintz, M.; Marín, R.R.R.; Babick, F.; Lindner, G.-G.; Schuster, T.B.; Brinkmann, U.; Krueger, N. Effects of ultrasonic dispersion energy on the preparation of amorphous SiO2 nanomaterials for in vitro toxicity testing. Nanomaterials 2019, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; He, W.; Hu, S.; Kong, R.; Yang, L. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere 2019, 225, 705–712. [Google Scholar] [CrossRef]
- Demir, E.; Castranova, V. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol. Rep. 2016, 3, 807–815. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 2016, 904, 10–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.-H.; Sisco, P.; Mudalige, T.K.; Sánchez-Pomales, G.; Howard, P.C.; Linder, S.W. Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. J. Agric. Food. Chem. 2015, 63, 3144–3152. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, Y.-H.; Kim, H.-M.; Oh, J.-M.; Kim, Y.-R.; Choi, S.-J. Determination of the fate and biological responses of food additive silica particles in commercial foods. Food Chem. 2020, 331, 127304. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Kramer, E.; Oomen, A.G.; Rivera, Z.E.H.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.; Weigel, S. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 2012, 6, 2441–2451. [Google Scholar] [CrossRef] [PubMed]
- You, S.-M.; Luo, K.; Jung, J.-Y.; Jeong, K.-B.; Lee, E.-S.; Oh, M.-H.; Kim, Y.-R. Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7. ACS Appl. Mater. Interfaces 2020, 12, 18292–18300. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: a review. J. Pharm. Biomed. Anal. 2014, 101, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, M.; Hulliger, J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem. Soc. Rev. 2017, 46, 5925–5934. [Google Scholar] [CrossRef]
- Luo, K.; Jeong, K.-B.; You, S.-M.; Lee, D.-H.; Kim, Y.-R. Molecular Rearrangement of Glucans from Natural Starch To Form Size-Controlled Functional Magnetic Polymer Beads. J. Agric. Food. Chem. 2018, 66, 6806–6813. [Google Scholar] [CrossRef]
- Bergmans, H.; van Die, I.; Hoekstra, W. Transformation in Escherichia coli: stages in the process. J. Bacteriol. 1981, 146, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Jeong, K.-B.; You, S.-M.; Lee, D.-H.; Jung, J.-Y.; Kim, Y.-R. Surface-engineered starch magnetic microparticles for highly effective separation of a broad range of bacteria. ACS Sustainable Chem. Eng. 2018, 6, 13524–13531. [Google Scholar] [CrossRef]
- Luo, K.; Park, H.; Adra, H.J.; Ryu, J.; Lee, J.-H.; Yu, J.; Choi, S.-J.; Kim, Y.-R. Charge-switchable magnetic separation and characterization of food additive titanium dioxide nanoparticles from commercial food. J. Hazard. Mater. 2020, 393, 122483. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Jeong, K.-B.; Park, C.-S.; Kim, Y.-R. Biosynthesis of superparamagnetic polymer microbeads via simple precipitation of enzymatically synthesized short-chain amylose. Carbohydr. Polym. 2018, 181, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, C.; Wei, C.; Li, M.; Li, X.; Deng, Z.; Fan, G. Molybdenum blue photometry method for the determination of colloidal silica and soluble silica in leaching solution. Anal. Methods 2015, 7, 5462–5467. [Google Scholar] [CrossRef]
- Lechner, C.; Becker, C. Silaffins in silica biomineralization and biomimetic silica precipitation. Mar. Drugs 2015, 13, 5297–5333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragni, R.; Cicco, S.; Vona, D.; Leone, G.; Farinola, G.M. Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics. J. Mater. Res. 2017, 32, 279–291. [Google Scholar] [CrossRef]
- Sumper, M.; Brunner, E. Silica biomineralisation in diatoms: the model organism Thalassiosira pseudonana. ChemBioChem 2008, 9, 1187–1194. [Google Scholar] [CrossRef]
- Sumper, M.; Kröger, N. Silica formation in diatoms: the function of long-chain polyamines and silaffins. J. Mater. Chem. 2004, 14, 2059–2065. [Google Scholar] [CrossRef]
- Delalat, B.; Sheppard, V.C.; Ghaemi, S.R.; Rao, S.; Prestidge, C.A.; McPhee, G.; Rogers, M.-L.; Donoghue, J.F.; Pillay, V.; Johns, T.G. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Chan, W.W.; Roderick, S.L.; Cohen, D.E. High-level expression and mutagenesis of recombinant human phosphatidylcholine transfer protein using a synthetic gene: evidence for a C-terminal membrane binding domain. Biochemistry 2000, 39, 15399–15409. [Google Scholar] [CrossRef]
- You, S.-M.; Jeong, K.-B.; Luo, K.; Park, J.-S.; Park, J.-W.; Kim, Y.-R. Paper-based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. Anal. Chim. Acta 2021, 1151, 338252. [Google Scholar] [CrossRef]
Commercial Foods | Silica Content (%, w/w) | Recovery Efficiency | Constituent Particle Size by SEM | Hydrodynamic Size (nm) | Polydispersity Index |
---|---|---|---|---|---|
S1 (noodle soup powder) | 0.852 | 77.99 | 21 ± 2 | 235.8 ± 60.3 | 0.477 |
S2 (chicken stock powder) | 0.126 | 50.52 | 21 ± 3 | 292.3 ± 40.2 | 0.342 |
S3 (Coffee creamer) | 0.119 | 49.05 | 15 ± 2 | 177.8 ± 40.8 | 0.226 |
S4 (Coffee mix) | 0.042 | 52.79 | 17 ± 3 | 584.3 ± 21.6 | 0.329 |
S5 (Milk tea powder) | 0.035 | 44.21 | 17 ± 2 | 365.7 ± 21.6 | 0.338 |
S6 (Potato chip) | 0.254 | 41.06 | 19 ± 2 | 299.9 ± 72.8 | 0.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; You, S.-M.; Luo, K.; Ko, J.-S.; Jo, A.-H.; Kim, Y.-R. Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food. Nanomaterials 2021, 11, 532. https://doi.org/10.3390/nano11020532
Lee J-H, You S-M, Luo K, Ko J-S, Jo A-H, Kim Y-R. Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food. Nanomaterials. 2021; 11(2):532. https://doi.org/10.3390/nano11020532
Chicago/Turabian StyleLee, Jun-Hee, Sang-Mook You, Ke Luo, Ji-Su Ko, Ah-Hyun Jo, and Young-Rok Kim. 2021. "Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food" Nanomaterials 11, no. 2: 532. https://doi.org/10.3390/nano11020532
APA StyleLee, J. -H., You, S. -M., Luo, K., Ko, J. -S., Jo, A. -H., & Kim, Y. -R. (2021). Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food. Nanomaterials, 11(2), 532. https://doi.org/10.3390/nano11020532