Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategies
2.3. Studies Selection and Data Extraction
3. Results
3.1. Studies Selection and Characteristics
3.2. Approaches for Chemical, Physical and Structural Characterization of Nano-Based Materials
3.2.1. Hydroxyapatite (HA)-Based
3.2.2. Polymer-Based
3.2.3. Calcium-Based
3.2.4. Other Nanocomposites
3.2.5. Scaffolds
3.2.6. Nanotubes
3.2.7. Coatings
3.3. Approaches for Drugs Delivery through Nano-Based Materials
3.4. Anti-Osteoporotic Effects of Nano-Based Materials as Drug Delivery System
3.4.1. Preclinical Studies Results
3.4.2. Clinical Study Results
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden. A Report Prepared in Collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Cummings, S.R.; Nevitt, M.C.; Browner, W.S.; Stone, K.; Fox, K.M.; Ensrud, K.E.; Cauley, J.; Black, D.; Vogt, T.H. Risk factors for hip fracture in white women. N. Engl. J. Med. 1995, 332, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; Krege, J.H.; Looker, A.C.; Schousboe, J.T.; Fan, B.; Sarafrazi Isfahani, N.; Shepherd, J.A.; Krohn, K.D.; Steiger, P.; Wilson, K.E.; et al. Spine fracture prevalence in a nationally representative sample of US women and men aged ≥ 40 years: Results from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Osteoporos. Int. 2017, 28, 1857–1866. [Google Scholar] [CrossRef]
- Carani, C.; Qin, K.; Simoni, M.; Faustini-Faustini, S.; Boyd, J.; Korach, K.S.; Simpson, E.R. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 1997, 337, 91–95. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–371. [Google Scholar] [CrossRef]
- Manhard, M.K.; Nyman, J.S.; Does, M.D. Advances in imaging approaches to fracture risk evaluation. Transl. Res. 2017, 181, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Raimundo, P.; Manzano, M.; Vallet-Regí, M. Nanoparticles for the treatment of osteoporosis. AIMS Bioeng. 2017, 4, 259–274. [Google Scholar]
- Arcos, D.; Boccaccini, A.R.; Bohner, M.; Díez-Pérez, A.; Epple, M.; Gómez-Barrena, E.; Herrera, A.; Planell, J.A.; Rodríguez-Mañas, L.; Vallet-Regí, M. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater. 2014, 10, 1793–1805. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.P.; Morin, S.; Leslie, W.; Papaioannou, A.; Cheung, A.M.; Davison, K.S.; Goltzman, D.; Hanley, D.A.; Hodsman, A.; Josse, R.; et al. Bisphosphonates for treatment of osteoporosis: Expected benefits, potential harms, and drug holidays. Can. Fam. Physician 2014, 60, 324–333. [Google Scholar]
- D’Amelio, P.; Isaia, G.C. The use of raloxifene in osteoporosis treatment. Expert Opin. Pharm. 2013, 14, 949–956. [Google Scholar] [CrossRef]
- Zaheer, S.; LeBoff, M.; Lewiecki, E.M. Denosumab for the treatment of osteoporosis. Expert Opin. Drug Metab. Toxicol. 2015, 11, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trejo, C.G.; Lozano, D.; Manzano, M.; Doadrio, J.C.; Salinas, A.J.; Dapía, S.; Gómez-Barrena, E.; Vallet-Regí, M.; García-Honduvilla, N.; Buján, J.; et al. The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials 2010, 31, 8564–8573. [Google Scholar] [CrossRef] [PubMed]
- Tokatlian, T.; Segura, T. siRNA applications in nanomedicine. WIREs Nanomed. Nanobiotechnol. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef]
- Choi, B.; Lee, S.H. Nano/Micro-Assisted Regenerative Medicine. Int. J. Mol. Sci. 2018, 19, 2187. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, R.; Ravichandran, Y.D. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Int. J. Nanomed. 2015, 10 (Suppl. 1), 7–15. [Google Scholar]
- Yang, L.; Webster, T.J. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin. Drug Deliv. 2009, 6, 851–864. [Google Scholar] [CrossRef]
- Webster, T.J. Nanophase ceramics: The future orthopedic and dental implant material. Nanostruct. Mater. 2001, 27, 125–166. [Google Scholar]
- Walmsley, G.G.; Mc Ardle, A.; Tevlin, R.; Momeni, A.; Atashroo, D.; Hu, M.S.; Feroze, A.H.; Wong, V.W.; Lorenz, P.H.; Longaker, M.T.; et al. Nanotechnology in bone tissue engineering. Nanomedicine 2015, 11, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Leeuwenburgh, S.C.G.; Li, Y.; Jansen, J.A. The Use of Micro-and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Eng. Part B 2012, 18, 24–39. [Google Scholar] [CrossRef]
- Vieira, S.; Vial, S.; Reis, R.L.; Oliveira, J.M. Nanoparticles for Bone Tissue Engineering. Biotechnol. Prog. 2017, 33, 590–611. [Google Scholar] [CrossRef] [Green Version]
- Heil, J.; Reifferscheid, G.; Waldmann, P.; Leyhausen, G.; Geurtsen, W. Genotoxicity of dental materials. Mutat. Res. Toxicol. 1996, 368, 181–194. [Google Scholar] [CrossRef]
- Murray, P.E.; García Godoy, C.; García Godoy, F. How Is the Biocompatibilty of Dental Biomaterials Evaluated? Med. Oral Patol. Oral Cir. Bucal 2007, 12, 258–266. [Google Scholar]
- Quan, R.; Tang, Y.; Huang, Z.; Xu, J.; Wu, X.; Yang, D. Study on the genotoxicity of HA/ZrO2 composite particles in vitro. Mater. Sci. Eng. C 2013, 33, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J Med Libr Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef]
- Saaiq, M.; Ashraf, B. Modifying “Pico” Question into “Picos” Model for More Robust and Reproducible Presentation of the Methodology Employed in A Scientific Study. World J Plast Surg. 2017, 6, 390–392. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Wang, Z.; Zhou, H.; Kang, M.; Dong, R.; Zhao, J. Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbar disease in osteoporosis patients by downregulating serum miR-155. Int. J. Nanomed. 2017, 12, 8459–8469. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, H.S.; Bosco, R.; Both, S.K.; Iafisco, M.; Leeuwenburgh, S.C.; Jansen, J.A.; van den Beucken, J.J. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. Biomaterials 2014, 35, 5482–5490. [Google Scholar] [CrossRef]
- Cai, M.; Yang, L.; Zhang, S.; Liu, J.; Sun, Y.; Wang, X. A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy. Int. J. Nanomed. 2017, 12, 7469–7482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Xiong, W.; Fang, Z.; Guan, H.; Wu, W.; Li, Y.; Zhang, Y.; Alvarez, M.M.; Gao, B.; Huo, K.; et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater. 2016, 31, 388–400. [Google Scholar] [CrossRef]
- Erfanian, A.; Rasti, B.; Manap, Y. Comparing the calcium bioavailability from two types of nano-sized enriched milk using in-vivo assay. Food Chem. 2017, 214, 606–613. [Google Scholar] [CrossRef]
- Fazil, M.; Hassan, M.Q.; Baboota, S.; Ali, J. Biodegradable intranasal nanoparticulate drug delivery system of risedronate sodium for osteoporosis. Drug Deliv. 2016, 23, 2428–2438. [Google Scholar] [CrossRef] [PubMed]
- Fouad-Elhady, E.A.; Aglan, H.A.; Hassan, R.E.; Ahmed, H.H.; Sabry, G.M. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020, 6, e03341. [Google Scholar] [CrossRef]
- Ignjatović, N.; Ajduković, Z.; Savić, V.; Najman, S.; Mihailović, D.; Vasiljević, P.; Stojanović, Z.; Uskoković, V.; Uskoković, D. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J. Mater. Sci. Mater. Med. 2013, 24, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Li, J.; Zhang, Z.; Sun, E.; Feng, L.; Jia, X. Mechanism of enhanced antiosteoporosis effect of circinal-icaritin by self-assembled nanomicelles in vivo with suet oil and sodium deoxycholate. Int. J. Nanomed. 2015, 10, 2377–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, G.; Liu, J.; Wu, J.; Wang, Y. Development of three-component conjugates: To get nano-globes with porous surfaces, high in vivo anti-osteoporosis activity and minimal side effects. J. Mater. Chem. 2012, 22, 21740–21748. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, K.J.; Anand, V.; Bhatia, G.; Singh, A.P.; Kaur, M. Elucidating the role of size of hydroxyl apatite particles toward the development of competent antiosteoporotic bioceramic materials: In vitro and in vivo studies. J. Biomed. Mater. Res. A 2019, 107, 1723–1735. [Google Scholar] [CrossRef]
- Kaur, R.; Ajitha, M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur. J. Pharm. Sci. 2019, 136, 104956. [Google Scholar] [CrossRef]
- Kettenberger, U.; Luginbuehl, V.; Procter, P.; Pioletti, D.P. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation. J. Tissue Eng. Regen. Med. 2017, 11, 1974–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khajuria, D.K.; Razdan, R.; Mahapatra, D.R. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur. J. Pharm. Sci. 2015, 66, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, D.K.; Disha, C.; Vasireddi, R.; Razdan, R.; Mahapatra, D.R. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Vasireddi, R.; Trebbin, M.; Karasik, D.; Razdan, R. Novel therapeutic intervention for osteoporosis prepared with strontium hydroxyapatite and zoledronic acid: In vitro and pharmacodynamic evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 698–708. [Google Scholar] [CrossRef]
- Kotak, D.J.; Devarajan, P.V. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine 2020, 24, 102153. [Google Scholar] [CrossRef]
- Luo, X.; Barbieri, D.; Duan, R.; Yuan, H.; Bruijn, J.D. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater. 2015, 26, 331–337. [Google Scholar] [CrossRef]
- Offermanns, V.; Andersen, O.Z.; Riede, G.; Andersen, I.H.; Almtoft, K.P.; Sørensen, S.; Sillassen, M.; Jeppesen, C.S.; Rasse, M.; Foss, M.; et al. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats. Int. J. Nanomed. 2016, 11, 2431–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qayoom, I.; Teotia, A.K.; Kumar, A. Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules 2020, 21, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, S.; Mukherjee, D.; Anbu, J.; Murahari, M.; Teja, B.V. Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: Formulation development, in vivo, and molecular modelling studies. J. Microencapsul. 2019, 36, 338–355. [Google Scholar] [CrossRef]
- Sahana, H.; Khajuria, D.K.; Razdan, R.; Mahapatra, D.R.; Bhat, M.R.; Suresh, S.; Rao, R.R.; Mariappan, L. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis. J. Biomed. Nanotechnol. 2013, 9, 193–201. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Hu, Y.; Luo, Z.; Ma, P.; Li, L.; Mu, C.; Huang, L.; Pei, Y.; Cai, K. Regulation of local bone remodeling mediated by hybrid multilayer coating embedded with hyaluronan-alendronate/BMP-2 nanoparticles on Ti6Al7Nb implants. J. Mater. Chem. B 2016, 4, 7101–7111. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ye, X.; Cai, M.; Liu, X.; Xiao, J.; Zhang, C.; Wang, Y.; Yang, L.; Liu, J.; Li, S.; et al. Osteoblast-Targeting-Peptide Modified Nanoparticle for siRNA/microRNA Delivery. ACS Nano 2016, 10, 5759–5768. [Google Scholar] [CrossRef]
- Takeuchi, I.; Fukuda, K.; Kobayashi, S.; Makino, K. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed. Mater. Eng. 2016, 27, 475–483. [Google Scholar] [CrossRef]
- Takeuchi, I.; Kobayashi, S.; Hida, Y.; Makino, K. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis. Colloids Surf. B Biointerfaces 2017, 155, 35–40. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, J.; Ai, Z.; Su, J. Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis. Int. J. Nanomed. 2019, 14, 7839–7849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Sun, J.; Tan, L.; Yan, Q.; Li, L.; Chen, L.; Liu, X.; Bin, S. Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact. Mater. 2020, 5, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Wang, F.Q.; Lu, C.B.; Zou, J.W.; Hu, J.B.; Yang, Z.; Sang, H.X.; Zhang, Y. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: An in vitro and in vivo study. Biomed. Mater. 2020, 15, 055013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, L.; Miron, R.J.; Zhang, Q.; Bian, Z. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d. J. Dent. Res. 2014, 93, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Chen, Y.E.; Chen, J.; Ma, P.X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 2016, 7, 10376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, X.; Geng, S.; Wei, L.; Miron, R.J.; Zhao, Y.; Zhang, Y. Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: In vitro and in vivo characterization. J. Biomed. Mater. Res. A 2017, 105, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Boanini, E.; Torricelli, P.; Bonvicini, F.; Cassani, M.C.; Fini, M.; Gentilomi, G.A.; Bigi, A. A new multifunctionalized material against multi-drug resistant bacteria and abnormal osteoclast activity. Eur. J. Pharm. Biopharm. 2018, 127, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kyllönen, L.; D’Este, M.; Alini, M.; Eglin, D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater. 2015, 11, 412–434. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Oden, A.; McCloskey, E.V. A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX®. Osteoporos. Int. 2011, 22, 2347–2355. [Google Scholar] [CrossRef]
- Lyles, K.W.; Colón-Emeric, C.S.; Magaziner, J.S.; Adachi, J.D.; Pieper, C.F.; Mautalen, C.; Hyldstrup, L.; Recknor, C.; Nordsletten, L.; Moore, K.A.; et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 2007, 357, 1799–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, S.T.; Watts, N.B.; Genant, H.K.; McKeever, C.D.; Hangartner, T.; Keller, M.; Chesnut, C.H.; Brown, J.; Eriksen, E.F.; Hoseyni, M.S.; et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis. JAMA 1999, 282, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Reginster, J.Y.; Brandi, M.L.; Cannata-Andía, J.; Cooper, C.; Cortet, B.; Feron, J.M.; Genant, H.; Palacios, S.; Ringe, J.D.; Rizzoli, R. The position of strontium ranelate in today’s management of osteoporosis. Osteoporos. Int. 2015, 26, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Descamps, V.; Meyer, O.; Speirs, C.; Belissa-Mathiot, P.; Musette, P. Drug rash with eosinophilia and systemic symptoms (DRESS) in patients receiving strontium ranelate. Osteoporos. Int. 2013, 24, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Crockett, J.C. Osteoporosis—A current view of pharmacological prevention and treatment. Drug Des. Devel. 2013, 7, 435–448. [Google Scholar]
- Shane, E.; Burr, D.; Abrahamsen, B.; Adler, R.A.; Brown, T.D.; Cheung, A.M.; Cosman, F.; Curtis, J.R.; Dell, R.; Dempster, D.W.; et al. Atypical subtrochanteric and diaphyseal femoral fractures: Second report of a task force of the American Society for Bone and Mineral Research. J. Bone Min. Res. 2014, 29, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. International Task Force on Osteonecrosis of the Jaw. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus. J. Bone Min. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
Reference | Aim | Study Design | Experimental Groups | Main Characteristics of Nanomaterial | Main Results |
---|---|---|---|---|---|
Cai et al., 2017 [31] | Anti-OP effect of anti-miR214 delivered by PU nanomicelles modified by the acidic peptide Asp8 injected via tail vein | Female C57 BL/6 OVX mice |
| PU nanomicelles modified by acidic peptide Asp8 (~80 nm), loaded with anti-miR214 | ↑BMD, Tb.Th, Tb.N, BV/TV, SMI, ↓Tb.Sp, Oc.S/BS, Oc.N/BPm in Asp8-PU-anti-miR214 vs. Asp8-PU |
Fouand-Elhady et al., 2020 [35] | Anti-OP effect of nHA, nCh/HA and nAg/HA delivered intravenously | Female albino Wistar OVX rats |
| nHA, nCh/HA and nAg/HA (25.5, 28.85 and 22.73 nm) | ↓SOST, BALP, BSP, RANKL, CtsK and ↑calcification in all groups vs. OVX only |
Kaur et al., 2019a [39] | Anti-OP effect of nHA and mHA particles doped with Eu oxides injected intrafemorally | Female Wistar OVX rats (DM treated) |
| Eu-nHA and Eu-mHA (12.27 ± 0.08 and 25.29 ± 0.15) | ↓ALP in all groups vs. OP only. ↑Ca, body and dry bone weight, volume, density, peak load, ultimate stiffness, Young’s modulus in all groups vs. OP only |
Kettenberger et al., 2017 [41] | Anti-OP effect of ZOL loaded nHA integrated in a cross-linked hyaluronic acid hydrogel (nHA-ZOL-Gel) injected in the femoral condyle | Female Wistar OVX rats |
| nHA-ZOL-Gel (~200 nm) | ↑MV/TV, MR and ↓DR in nHA-ZOL-Gel vs. nHA-Gel |
Khajuria et al., 2015 [42] | Anti-OP effect of ZOL-HA nanoparticles (HNLZ) injected intravenously | Female Wistar OVX rats |
| HA NPs (100–130 nm) loaded with ZOL | ↓BSAP, PINP, OCN, TRACP-5b, CTx, Tb.Sp, ↑BV/TV, Tb.N, Tb.Th, peak load, ultimate stiffness and strength, toughness, Young’s modulus in all groups vs. saline |
Khajuria et al., 2016 [43] | Anti-OP effect of RIS/ZnHA NPs injected intravenously | Female Wistar OVX rats |
| ZnHA NPs (14.74 and 18.08 nm) loaded with RIS | ↓BSAP, TRACP-5b, Ca, P, creatinine, Tb.Sb, ↑BV/TV, Tb.N, Tb.Th, peak load, ultimate stiffness, strength, toughness, Young’s modulus, Ca, P, Ca/P in all groups vs. saline |
Khajuria et al., 2017 [44] | Anti-OP effect of Sr substituted HA-ZOL (SrHA/ZOL) injected intravenously | Female Wistar OVX rats |
| SrHA NPs (31.28–40.87 nm) loaded with ZOL | ↑BV/TV, Tb.N, Tb.Th, peak load, ultimate stiffness and strength, toughness, Young’s modulus and ↓BSAP, TRACP-5b, Tb.Sp in all groups vs. saline |
Kotak et al., 2020 [45] | Anti-OP effect of SCT loaded HA-NPs injected sublingually or subcutaneously | Female Sprague Dawley OVX rats |
| HA-NPs (100 nm) loaded with SCT | ↓serum ALP, Ca, P, erosions, porosity, resorption pits and ↑bone density and strength in all groups vs. saline |
Santhosh et al., 2019 [49] | Anti-OP effect of a RIS functionalized chitosan NPs (RISCN) injected intramuscularly | Female Wistar OVX rats (MP treated) |
| RIS functionalize NPs | ↑BMD, ALP in all groups vs. MP. ↑Ca in MP-RISCN vs. MP. ↑healing of trabecular microarchitecture and ↓cortical porosity on the bone surfaces of treatment groups |
Sahana H et al., 2013 [50] | Anti-OP effect of RIS-HA NPs (NHLR) injected intravenously | Female Wistar OVX rats |
| NPs of HA (80–130 nm) loaded with RIS | ↑BMD, maximum stress, Young’s modulus, ↓bone porosity in NHLR (250 μg/kg) vs. OVX only |
Sun et al., 2016 [52] | Anti-OP efficacy of Ser-Asp-Ser-Ser-Asp peptide (SDSSD)-modified PU nanomicelles to deliver anti-miR-214 to OBs injected via tail vein | Female OVX mice |
| PU nanomicelles (70 nm) conjugated to SDSSD peptide to encapsulate siRNA/microRNA | ↓miR-214, ↑BMD, MAR in SDSSD-PU-anti-miR-214 vs. SDSSD-PU-anti-scramble |
Wang et al., 2019 [55] | Anti-OP effect of NOB-loaded PEG-PCL injected intraperitoneally | C57Bl/6 OVX mice |
| PEG-PCL micelles loaded with NOB (diameter 124 nm) | ↑BMD, BV/TV and ↓Tb.Sp in NOB-PEG-PCL vs. all groups |
Zhang et al., 2014 [58] | Anti-OP effect on alveolar bone change of N-(2-hydroxypropyl) methacrylamide NPs loaded with Asp8-(STR-R8)-Sema4d siRNA injected intravenously | Female Balb/c OVX mice |
| Polymeric NPs loaded with Asp8-(STR-R8)-Sema4d siRNA | ↑BV/TV, OBs, OCs number, ↓Sema4d, inter-molar alveolar bone height loss in Asp8-(STR-R8)-Sema4d siRNA vs. all groups |
Reference | Aim | Study Design | Experimental Groups | Main Characteristics of Nanomaterial | Main Results |
---|---|---|---|---|---|
Alghamdi et al., 2014 [30] | Anti-OP effect of Ti implants coated with alendronate loaded nCaP implanted in femoral condyle | Male Wistar ORX rats |
| Pin-shaped implants of pure Ti coated by ESD with nCaP, nCaP/BP, BP | ↑%BV in Ti-nCaP/BP and Ti-BP vs. Ti-non-coated. ↑%BIC in Ti-nCaP and Ti-nCaP/BP vs. Ti-non-coated |
Cheng et al., 2016 [32] | Anti-OP effect of NT structures loaded with Ag and Sr (NT-Ag.Sr) on Ti implants implanted in a tibial defect | Female Sprague Dawley OVX rats |
| NT-Ag.Sr on Ti surfaces (30 nm, 80 nm) | ↑BV/TV, Tb.N, Conn.D, BIC, BA ratio, ↓Tb.Sp in all groups vs. Ti and TiO2-NTs |
Ignjatovic et al., 2013 [36] | Anti-OP effect of a paramagnetic Co-substituted HA NPs implanted in an alveolar bone defect | Female Wistar OP rats (MP and DM treated) |
| Paramagnetic Co-substituted HA NPs | ↑ALP in all groups vs. OP-empty defect |
Luo et al., 2015 [46] | Anti-OP effect of nanosized Sr-substituted apatite/polylactide loaded with rhBMP-2 implanted intramuscularly | Female New Zealand OVX rabbits (MP treated) |
| Nanosized Sr-substituted apatite/polylactide loaded with rhBMP-2 | ↓B% in OVX-Sr0% group vs. all OVX and healthy groups. ↑B% in OVX-Sr50% group vs. OVX-Sr0% group. ↑Ap% and ↓areas with active OBs in OVX groups vs. healthy groups |
Offermanns et al., 2016 [47] | Anti-OP effect of nanotopographic implants with a Sr-functionalized Ti coating (Ti-Sr-O) implanted in tibia | Female Wistar OVX rats |
| Ti-Sr-O (thickness 1.500–2.000 nm) | ↑BA%, BIC% in Ti-Sr-O group vs. Ti |
Qayoom et al., 2020 [48] | Anti-OP effect of calcium sulfate/nHA based NC as carrier of BMP-2, ZOL, BMSCs-derived EXO, implanted in a femur defect | Sprague-Dawley OVX rats |
| NC functionalized with BMP-2, ZOL or EXO | ↑mineralization, BV/TV, Tb.N, ↓Tb.Sp in all groups vs. NC. ↑peak fracture force in NC-BMP-2-ZOL vs. all groups |
Shen et al., 2016 [51] | Anti-OP effect of a HY-Aln/BMP-2 nanoparticles embedded into the Gel/Chi multilayers on Ti6Al7Nb surfaces (Ti6Al7Nb/LBL/N) implanted into femoral epiphysis | New Zealand White OVX rabbits |
| HY-Aln NPs loaded with BMP-2a, immersed into Gel/Chi on Ti6Al7Nb | ↑interfacial strength, BV/TV, Tb.Th, new bone formation in Ti6Al7Nb/LBL/NP vs. all groups |
Wu et al., 2020 [56] | Anti-OP effect of a poly (N-isopropylacrylamide) brush modified mesoporous HA loaded with SIM (MHA-SIM-P) on femur defect | Female Wistar OVX rats |
| MHA-P NPs (4 nm pores) loaded with SIM | ↑BV/TV, Tb.N, OPN, BSP and ↓Tb.Sp, OCs number in MHA-SIM-P vs. all groups |
Yang et al., 2020 [57] | Anti-OP effect of ZOL loaded gelatin NPs integrated porous Ti scaffold implanted in a femoral defect | Female New Zealand OVX rabbits |
| pDA-coated porous Ti6Al4V scaffold, integrated with ZOL loaded gelatin NPs (150 nm) | ↑BV/TV in Ti6Al4V-ZOL-NPs (1, 10, 50 μmol/L) vs. OVX only |
Zhang et al., 2016 [59] | Anti-OP effect of HP polyplexes (PEI, PEG) loaded with miR-26a, encapsulated in PLGA MS, immobilized on NF PLLA implanted into calvaria defect | Female C57BL/6J OVX mice |
| HP polyplexes (PEI, PEG) (224 nm) loaded with miRNA (miR-26a), encapsulated in PLGA MS, immobilized on NF PLLA | ↑BMD, BV/TV, Ob.S/BS, Ob.N/B.Pm, MAR, BFR, OCN in cell-free PLLA with immobilized PLGA (64-K) MS loaded with HP/miR-26a vs. all groups |
Zhang et al., 2017 [60] | Anti-OP effect of PIB nanogel containing MBG loaded with Sr in a critical-sized femur defect | Female OVX rats |
| PIB nanogels loaded with Sr-MBG and OBs | ↑BMD, BV/TV, mineralization, Col I in PIB-Sr-MBG-OBs vs. all groups. ↑OCs number in -PIB-OBs vs. all groups |
Reference | Aim | Study Design | Experimental Groups | Main Characteristics of Nanomaterial | Main Results |
---|---|---|---|---|---|
Erfanian et al., 2017 [33] | Anti-OP effect of nano-sized Ca carbonate-enriched-milk and nano-sized Ca citrate-enriched-milk delivered by gavage | Female Sprague-Dawley OVX+ low-Ca diet rats |
| Ca carbonate nano-sized particle enriched milks (~0.229–0.452 nm) and Ca citrate nano-sized particle enriched milks (~0.259–0.497 nm) | ↑ Ca, Ca absorption, maximum load, femur structure morphology in nano-sized Ca carbonate-enriched-milk vs. nano-sized Ca citrate-enriched-milk |
Fazil et al., 2016 [34] | Anti-OP effect of PLGA NPs and RIS delivered intranasally | Female Wistar OP rats (DM treated) |
| PLGA-NPs loaded with RIS (184.87 ± 4.33 to 77.86 ± 8.67 nm) | ↓ALP, creatinine, ALT, AST and ↑Ca in all groups vs. OP only |
Jiang et al., 2015 [37] | Anti-OP effect of CIT-SO self-assembled into nanomicelles under the action of DOC administrated orally | Sprague Dawley OVX rats |
| CIT-SO-DOC nanomicelles (204.77 ± 6.81 nm and 100.80 ± 7.21 nm) | ↑BMD, BMC, TMC, TMD, VOB, Tb.Th, BV/TV, Tb.N, energy to failure, stiffness, ultimate load, OPG, OCN, OPG and ↓Tb.Sp, BS/BV, CalibTbSp3D, HOP, ALP, TRACP-5b and RANKL in EV, CIT (40, 20 mg/kg) and CIT-SO (40, 20 mg/kg) vs. OVX only, and in CIT-SO vs. CIT |
Kang et al., 2012 [38] | Anti-OP effect of RGD-tetrapeptide (peptide Arg-Gly-Asp-AA) modified 17β-amino-11α-hydroxyl-androst-1,4-diene-3-one nanomaterial administered orally | ICR OP mice (prednisone treated) |
| Pharmacophore of 17β-amino-11α-hydroxyl-androst-1,4-diene-3-one, targeting sequence of RGD-tetrapeptide (55–200, 24–182, 48–188 nm) | ↑ BMD, dry weight, ash weight, Ca2+, BMC in all groups vs. OP-saline (4a > 4b > 4c) |
Kaur et al., 2019b [40] | Anti-OP effect of transdermal NE gel loaded with LNG | Male Albino Wistar OP rats (DM treated) |
| NE gel (11–123 nm) loaded with LNG | ↓ALP, BALP, CTx, TRACP-5b, ↑Ca, P, OCN, PINP, Young’s modulus, peak load in LNG5 and LNG10 groups vs. OP only. ↑BV/TV, Tb.Th, Tb.N and ↓Tb.Sp in all groups vs. OP only |
Takeuchi et al., 2016 [53] | Anti-OP effect of transdermal E2-loaded PLGA NPs | Female Sprague Dawley OVX + low-Ca diet rats |
| E2-loaded PLGA NPs (165.0 ± 13.1 nm) | ↑BMD in IP vs. all groups |
Takeuchi et al., 2017 [54] | Anti-OP effect of a E2-loaded PLGA NPs transdermal administered using iontophoresis | Female Sprague Dawley OVX + low-Ca diet rats |
| Bare and PVA-coated PLGA NPs (110 ± 41 nm and 106 ± 30.9 nm) loaded with E2 | ↑BMD in Bare NPs vs. all groups |
Reference | Aim | Study (Trial) Type | Patient Groups | Main Characteristics of Nanomaterial, and Drug Delivery Strategy | Measurements | Main Results |
---|---|---|---|---|---|---|
Qu et al., 2017 [29] | Efficacy and safety of ONAS on DLD OP patients | Non-RCT | 96 DLD OP patients (59 males, 37 females) underwent PLIFC treated with:
| PG and ONAS prepared with ampicillin (200 nm) | Exp. Time: 1 month. RT-PCR (miR-155 serum levels), biochemical analysis (SOD, GSH, AST, ALT), ELISA (IL-1β, IL-1ra), clinical outcome (VAS, JOA and ODI scores, surgical duration, blood loss, abnormal motion of the surgical segment, fusion rate) | ↓miR-155, ALT, AST, IL-1β, infection rates, side effects and ↑SOD, GSH, IL-1ra, fusion rates, JOA scores in ONAS group vs. control group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamanna, F.; Gambardella, A.; Contartese, D.; Visani, A.; Fini, M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. Nanomaterials 2021, 11, 530. https://doi.org/10.3390/nano11020530
Salamanna F, Gambardella A, Contartese D, Visani A, Fini M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. Nanomaterials. 2021; 11(2):530. https://doi.org/10.3390/nano11020530
Chicago/Turabian StyleSalamanna, Francesca, Alessandro Gambardella, Deyanira Contartese, Andrea Visani, and Milena Fini. 2021. "Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence" Nanomaterials 11, no. 2: 530. https://doi.org/10.3390/nano11020530
APA StyleSalamanna, F., Gambardella, A., Contartese, D., Visani, A., & Fini, M. (2021). Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. Nanomaterials, 11(2), 530. https://doi.org/10.3390/nano11020530