Enhancing the Stability of LiNi0.5Mn1.5O4 by Coating with LiNbO3 Solid-State Electrolyte: Novel Chemically Activated Coating Process versus Sol-Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of LNMO Precursor
2.2. Preparation of Li/Nb Coating Solution
2.3. Material Coating: Sol-Gel mEthod
2.4. Material Coating: New Chemically Activated Coating Method
2.5. Coating Preparation
2.6. Powder X-ray Diffraction and Scanning Electron Microscope
2.7. X-ray Photoelectron Spectroscopy
2.8. Electrochemical Measurements
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Powder X-ray Diffraction (XRD)
3.3. Electrochemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcantra, R.; Jaraba, M.; Lavela, P.; Tirado, J.L. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. J. Electroanal. Chem. 2004, 566, 187–192. [Google Scholar] [CrossRef]
- Aurbach, D.; Markovsky, B.; Talyossef, Y.; Salitra, G.; Kim, H.-J.; Choi, S. Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J. Power Sources 2006, 162, 780–789. [Google Scholar] [CrossRef]
- Lazarraga, M.G.; Pascual, L.; Gadjov, H.; Kovacheva, D.; Petrov, K.; Amarilla, J.M.; Rojas, R.M.; Martin-Luengo, M.A.; Rojo, J.M. Nanosize LiNiyMn2−yO4 (0 < y ≤ 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance. J. Mater. Chem. 2004, 14, 1640–1647. [Google Scholar]
- Arrebola, J.C.; Caballero, A.; Cruz, M.; Hernan, L.; Morales, J.; Castellon, E.R. Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries. Adv. Funct. Mater. 2006, 16, 1904–1912. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688–6694. [Google Scholar] [CrossRef]
- Wang, H.L.; Tan, T.A.; Yang, P.; Lai, M.O.; Lu, L. High-Rate Performances of the Ru-Doped Spinel LiNi0.5Mn1.5O4: Effects of Doping and Particle Size. J. Phys. Chem. C 2011, 115, 6102–6110. [Google Scholar] [CrossRef]
- Belharouak, I.; Lu, W.; Vissers, D.; Amine, K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem. Commun. 2006, 8, 329–335. [Google Scholar] [CrossRef]
- Dahn, J.R.; Fuller, E.; Obrovac, M.; Vonsacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 1994, 69, 265–270. [Google Scholar] [CrossRef]
- Sun, Y.K.; Hong, K.J.; Prakash, J.; Amine, K. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochem. Commun. 2002, 4, 344–348. [Google Scholar] [CrossRef]
- Talyosef, Y.; Markovsky, B.; Salitra, G.; Aurbach, D.; Kim, H.J.; Choi, S. The study of LiNi0.5Mn1.5O4 5 V cathodes for Li-ion batteries. J. Power Sources 2005, 146, 664–669. [Google Scholar] [CrossRef]
- Markovsky, B.; Talyosef, Y.; Salitra, G.; Aurbach, D.; Kim, H.J.; Choi, S. Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries. Electrochem. Commun. 2004, 6, 821–826. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Ren, C.; Tai, G.-A.; Zhang, X.; Li, A.-D.; Wu, D.; Li, H.; Zhou, F. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J. Power Sources 2014, 266, 433–439. [Google Scholar] [CrossRef]
- Shim, J.; Lee, S.; Park, S. Effects of MgO Coating on the Structural and Electrochemical Characteristics of LiCoO2 as Cathode Materials for Lithium Ion Battery. Chem. Mater. 2014, 26, 2537–2543. [Google Scholar] [CrossRef]
- Kim, M.G.; Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus currentconsumer in a Li-ion cell. J. Mater. Chem. 2008, 18, 5880–5887. [Google Scholar] [CrossRef]
- Wang, J.-H.; Wang, Y.; Guo, Y.-Z.; Ren, Z.-Y.; Liu, C.-W. Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. J. Mater. Chem. A 2013, 1, 4879–4884. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Wang, Z.; Guo, H.; Shen, L.; Wang, J. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J. Power Sources 2014, 252, 200–207. [Google Scholar] [CrossRef]
- Glass, A.; Nassau, K.; Negran, T. Ionic conductivity of quenched alkali niobate and tantalate glasses. J. Appl. Phys. 1978, 49, 4808–4811. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Chou, S.-L.; Gu, Q.-F.; Liu, H.-K.; Li, H.-J.; Ozawa, K.; Wang, J.-Z. Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3. ACS Appl. Mater. Interfaces 2014, 6, 22155–22165. [Google Scholar] [CrossRef]
- Sun, W.; Xie, M.; Shi, X.; Zhang, L. Study of new phases grown on LiNbO3 coated LiCoO2 cathode material with an enhanced electrochemical performance. Mater. Res. Bull. 2015, 61, 287–291. [Google Scholar] [CrossRef]
- Kim, H.; Byun, D.; Chang, W.; Jung, H.-G.; Choi, W. A nano-LiNbO3 coating layer and diffusion-induced surface control towards high-performance 5 V spinel cathodes for rechargeable batteries. J. Mater. Chem. A 2017, 5, 25077–25089. [Google Scholar] [CrossRef]
- Mereacre, V.; Bohn, N.; Müller, M.; Indris, S.; Bergfeldt, T.; Binder, J.R. Improved performance of high-voltage Li-ion batteries using a novel chemically activated coating process. Mater. Res. Bull. 2021, 134, 111095. [Google Scholar] [CrossRef]
- Hua, W.; Wu, Z.; Chen, M.; Knapp, M.; Guo, X.; Indris, S.; Binder, J.R.; Bramnik, N.N.; Zhong, B.; Guo, H.; et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. J. Mater. Chem. A 2017, 5, 25391–25400. [Google Scholar] [CrossRef]
- Antoniassi, B.; González, A.H.M.; Fernandes, S.L.; Graeff, C.F.O. Microstructural and electrochemical study of La0.5Li0.5TiO3. Mater. Chem. Phys. 2011, 127, 51–55. [Google Scholar] [CrossRef]
- Bohnke, C.; Regrag, B.; Le Berre, F.; Fourquet, J.-L.; Randrianantoandro, N. Comparison of pH sensitivity of lithium lanthanum titanate obtained by sol-gel synthesis and solid state chemistry. Solid State Ionics 2005, 176, 73–80. [Google Scholar] [CrossRef]
- Kobylyanskaya, S.; Gavrilenko, O.; Belous, A. Synthesis of nanosized (Li,La){Ti,Nb,Ta}O3 particles using the sol-gel method. Russ. J. Inorg. Chem. 2013, 58, 637–647. [Google Scholar] [CrossRef]
- Popovici, I.C.; Chirila, E.; Popescu, V.; Ciupina, V.; Prodan, G. Sol-gel preparation and characterization of perovskite lanthanum lithium titanate. J. Mater. Sci. 2007, 42, 3373–3377. [Google Scholar] [CrossRef]
- Zhu, Y.-R.; Yuan, J.; Zhu, M.; Hao, G.; Yi, T.-F.; Xie, Y. Improved electrochemical properties of Li4Ti5O12–Li0.33La0.56TiO3 composite anodes prepared by a solid-state synthesis. J. Alloys Compd. 2015, 646, 612–619. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, T.; Han, H.; Song, D.; Shi, X.; Zhang, L.; Bie, L. Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with the fast lithium-ion conductor Li-La-Ti-O. J. Power Sources 2017, 364, 272–279. [Google Scholar] [CrossRef]
- Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J.R. Synthesis and Electrochemistry of LiNixMn2-xO4. J. Electrochem. Soc. 1997, 144, 205–213. [Google Scholar] [CrossRef]
- Alca’ntara, R.; Jaraba, M.; Lavela, P.; Tirado, J.L. Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−xNi0.5Mn1.5O4 spinel. Electrochim. Acta 2002, 47, 1829–1835. [Google Scholar]
- Schroeder, M.; Glatthaar, S.; Geßwein, H.; Winkler, V.; Bruns, M.; Scherer, T.; Chakravadhanula, V.S.K.; Binder, J.R. Post-doping via spray-drying: A novel sol-gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J. Mater. Sci. 2013, 48, 3404–3414. [Google Scholar] [CrossRef]
- Wang, H.; Ben, L.; Yu, H.; Chen, Y.; Yang, X.; Huang, X. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A 2017, 5, 822–834. [Google Scholar] [CrossRef]
- Liu, M.-H.; Huang, H.-T.; Lin, C.-M.; Chen, J.-M.; Liao, S.-C. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim. Acta 2014, 120, 133–139. [Google Scholar] [CrossRef]
- Sun, P.; Ma, Y.; Zhai, T.; Li, H. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochim. Acta 2016, 191, 237–246. [Google Scholar] [CrossRef]
- Cho, J.; Kim, Y.J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Xu, C. Influence of Nb5+ Doping on Structure and Electrochemical Properties of Spinel Li1.02Mn2O4. J. Mater. Sci. Technol. 2012, 28, 817–822. [Google Scholar] [CrossRef]
- Berar, J.F.; Lelann, P.E. E.S.D.’s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Cryst. 1991, 24, 1–5. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Reddy, J.M.; Bernstein, J.L. Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24 °C. J. Phys. Chem. Solids 1966, 27, 997–1012. [Google Scholar] [CrossRef]
- Okada, K.; Machida, N.; Naito, M.; Shigematsu, T.; Ito, S.; Fujiki, S.; Nakano, M.; Aihara, Y. Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 2014, 255, 120–127. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Wang, J.-Q.; Yang, X.-L.; Liang, G.; Li, T.; Yu, P.-L.; Ma, D. Enhanced Electrochemical Performance of Fast Ionic Conductor LiTi2(PO4)3-Coated LiNi1/3Co1/3Mn1/3O2 Cathode Material. ACS Appl. Mater. Interfaces 2018, 10, 11663–11670. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Zhang, Q.; Xu, M.; Zhou, X.; Zhua, H.; Zhang, K. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 894–904. [Google Scholar] [CrossRef]
- Wen, W.; Yang, X.; Wang, X.; Ge, L.; Shu, H. Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating. J. Solid State Electrochem. 2015, 19, 1235–1246. [Google Scholar] [CrossRef]
- Dannehl, N.; Steinmüller, S.O.; Szabó, D.V.; Pein, M.; Sigel, F.; Esmezjan, L.; Hasenkox, U.; Schwarz, B.; Indris, S.; Ehrenberg, H. High-Resolution Surface Analysis on Aluminum Oxide-Coated Li1.2Mn0.55Ni0.15Co0.1O2 with Improved Capacity Retention. ACS Appl. Mater. Interfaces 2018, 10, 43131–43143. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.; Lee, K.Y.; Mun, J.; Lee, J.K.; Choi, W. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J. Power Sources 2016, 315, 284–293. [Google Scholar] [CrossRef]
Sample | Lattice Parameter, a (pm) | x (LiNbO3) |
---|---|---|
LNMO | 818.10(8) | - |
LNMO-800 | 817.93(7) | - |
LNMO-LNbO-800 | 817.95(8) | - |
LNMO-nLNbO-800 | 818.06(7) | - |
LNMO-nLNbO-800 (2.5%) | 817.77(12) | 2.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mereacre, V.; Stüble, P.; Ghamlouche, A.; Binder, J.R. Enhancing the Stability of LiNi0.5Mn1.5O4 by Coating with LiNbO3 Solid-State Electrolyte: Novel Chemically Activated Coating Process versus Sol-Gel Method. Nanomaterials 2021, 11, 548. https://doi.org/10.3390/nano11020548
Mereacre V, Stüble P, Ghamlouche A, Binder JR. Enhancing the Stability of LiNi0.5Mn1.5O4 by Coating with LiNbO3 Solid-State Electrolyte: Novel Chemically Activated Coating Process versus Sol-Gel Method. Nanomaterials. 2021; 11(2):548. https://doi.org/10.3390/nano11020548
Chicago/Turabian StyleMereacre, Valeriu, Pirmin Stüble, Ahmad Ghamlouche, and Joachim R. Binder. 2021. "Enhancing the Stability of LiNi0.5Mn1.5O4 by Coating with LiNbO3 Solid-State Electrolyte: Novel Chemically Activated Coating Process versus Sol-Gel Method" Nanomaterials 11, no. 2: 548. https://doi.org/10.3390/nano11020548
APA StyleMereacre, V., Stüble, P., Ghamlouche, A., & Binder, J. R. (2021). Enhancing the Stability of LiNi0.5Mn1.5O4 by Coating with LiNbO3 Solid-State Electrolyte: Novel Chemically Activated Coating Process versus Sol-Gel Method. Nanomaterials, 11(2), 548. https://doi.org/10.3390/nano11020548