VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials
Abstract
:1. Introduction
2. Gas/Vapor Sensitive Materials
- Tuning the surface morphology: shape, size, and dimensional control to obtain 0D (e.g., nanoparticles and quantum dots), 1D (e.g., nanofibers, nanotubes, and nanowires), 2D (e.g., thin films, nanosheets, and nanoplates), and 3D (e.g., porous films and nanoflowers, which consist of 2D nanosheets) materials.
- Modifying or functionalizing the material: control of type and level of intentional impurities (doping, formation of Schottky barriers, heterojunctions, and/or inorganic/organic hybrid structures).
3. Tailoring Materials for Enhanced Sensing Properties to VOCs
3.1. Surface Area—The Larger, the Better
3.2. Modification or Functionalization—Pushing the Performance Further
- Decorated materials, when incorporating low amounts of noble metals or secondary materials (e.g., MOXs, POMs, CbMs) at the surface. These are represented by an “@” sign in between the guest and host material, e.g., Au@WO3. Figure 4 displays examples of the decoration of WO3 nanowires with gold, platinum, or iron oxide.
- Simple mixtures, when mixing two or more gas sensitive materials randomly. These are represented by a hyphen “-“ sign in between the constituents, e.g., ZnO-CuO.
- Bilayers and trilayers, when there is a well-defined partition or interface between the two or three gas sensitive materials. These are represented by a slash “/” sign in between the constituents, e.g., CuO/SnO2 and GO/ZnO/GO.
- Doped materials, when incorporating “guest” atoms into the material structure, e.g., Ce-doped SnO2.
4. Selectivity—In Search of Specificity
- Simple oxygenated hydrocarbons
- Aliphatic hydrocarbons
- Aromatic hydrocarbons
- Carbonyl compounds
Humidity Effects—The Uninvited Guest
5. Enabling the Material Properties for Their Practical Use
5.1. Transducing Platforms—On the Capture of the Sensor Response
5.2. Synthesis of Materials—Path to the On-Chip Integration
5.3. Machine-Learning—Mimicking the Human Olfactory Systems
6. Outlook and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Receptor Function and Response of Semiconductor Gas Sensor. J. Sens. 2009, 2009. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Wong, Y.C.Y.H.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.C.Y.H. Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Bai, H.; Shi, G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, G.; Xu, J.L.; Zhang, M.; Kuo, C.C.; Wang, S.D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Sci. Technol. Adv. Mater. 2020, 21, 768–786. [Google Scholar] [CrossRef]
- Clément, P.; Llobet, E. Carbon nanomaterials functionalized with macrocyclic compounds for sensing vapors of aromatic VOCs. In Semiconductor Gas Sensors; Woodhead Publishing: Cambridge, UK, 2019; pp. 223–237. ISBN 9780081025598. [Google Scholar]
- Lee, S.W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D.S. Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 2018, 255, 1788–1804. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483–100513. [Google Scholar] [CrossRef]
- Li, T.; Shen, Y.; Zhao, S.; Zhong, X.; Zhang, W.; Han, C.; Wei, D.; Meng, D.; Ao, Y. Sub-ppm level NO2 sensing properties of polyethyleneimine-mediated WO3 nanoparticles synthesized by a one-pot hydrothermal method. J. Alloys Compd. 2019, 783, 103–112. [Google Scholar] [CrossRef]
- Peterson, P.J.D.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Hey, J.V.; Leigh, R.J. Practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef] [PubMed]
- Punetha, D.; Kar, M.; Pandey, S.K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 2020, 10, 2151–2162. [Google Scholar] [CrossRef]
- Shen, W.C.; Shih, P.J.; Tsai, Y.C.; Hsu, C.C.; Dai, C.L. Low-concentration ammonia gas sensors manufactured using the CMOS-MEMS technique. Micromachines 2020, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, F.; Wang, S.; Yu, W.; Huang, T.; Sun, Y.; Cheng, C.; Chen, X.; Hao, J.; Dai, N. Ultrasensitive ppb-level H2S gas sensor at room temperature based on WO3/rGO hybrids. J. Mater. Sci. Mater. Electron. 2020, 31, 5008–5016. [Google Scholar] [CrossRef]
- Binions, R.; Naik, A.J.T. Metal oxide semiconductor gas sensors in environmental monitoring. In Semiconductor Gas Sensors; Woodhead Publishing: Cambridge, UK, 2013; pp. 433–466. ISBN 9780857092366. [Google Scholar]
- Llobet, E.; Brunet, J.; Pauly, A.; Ndiaye, A.; Varenne, C. Nanomaterials for the selective detection of hydrogen sulfide in air. Sensors 2017, 17, 391. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shen, Z.X.; Zhang, L.M.; Zhang, Y.; Zhang, T.; Lei, Y.L.; Niu, X.Y.; Zhang, Q.; Dang, W.; Han, W.P.; et al. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environ. Int. 2019, 133, 1052522–1052534. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef] [Green Version]
- Berenjian, A.; Chan, N.; Malmiri, H.J. Volatile Organic Compounds removal methods: A review. Am. J. Biochem. Biotechnol. 2012, 8, 220–229. [Google Scholar] [CrossRef]
- Wille, S.M.R.; Lambert, W.E.E. Volatile substance abuse—Post-mortem diagnosis. Forensic Sci. Int. 2004, 142, 135–156. [Google Scholar] [CrossRef]
- Koppmann, R. Volatile Organic Compounds in the Atmosphere; Blackwell Publishing Ltd.: Oxford, UK, 2008; ISBN 9780470994153. [Google Scholar]
- ACGIH 2019 TLVs and BEIs; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2019; ISBN 9781607261056.
- Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 2017, 253, 703–713. [Google Scholar] [CrossRef]
- Buszewski, B.; Ligor, T.; Jezierski, T.; Wenda-Piesik, A.; Walczak, M.; Rudnicka, J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem. 2012, 404, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Huang, J.Z.; Abbassi-Ghadi, N.; Mackenzie, H.A.; Veselkov, K.A.; Hoare, J.M.; Lovat, L.B.; Spanel, P.; Smith, D.; Hanna, G.B. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann. Surg. 2015, 262, 981–990. [Google Scholar] [CrossRef]
- Kumar, S.; Huang, J.Z.; Abbassi-Ghadi, N.; Spanel, P.; Smith, D.; Hanna, G.B. Selected Ion Flow Tube Mass Spectrometry Analysis of Exhaled Breath for Volatile Organic Compound Profiling of Esophago-Gastric Cancer. Anal. Chem. 2013, 85, 6121–6128. [Google Scholar] [CrossRef] [PubMed]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer 2016, 138, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 21301. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185. [Google Scholar] [CrossRef]
- Kamarulzaman, N.; Kasim, M.F.; Chayed, N.F. Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes. Results Phys. 2016, 6, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Yang, H.; Ma, X. A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. J. Alloys Compd. 2013, 578, 272–278. [Google Scholar] [CrossRef]
- Meng, F.; Hou, N.; Ge, S.; Sun, B.; Jin, Z.; Shen, W.; Kong, L.; Guo, Z.; Sun, Y.; Wu, H.; et al. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J. Alloys Compd. 2015, 626, 124–130. [Google Scholar] [CrossRef]
- Al-Salman, H.; Abdullah, M.J. Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application. Measurement 2015, 59, 248–257. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Lim, J.-O.; Huh, J.-S.; Noh, J.-S.; Lee, W. Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 2013, 13, S156–S161. [Google Scholar] [CrossRef]
- Zhang, S.; Byun, H.; Lim, J.; Huh, J.; Lee, W. Controlled Synthesis of ZnO Nanostructures for Sub-ppm-Level VOC Detection. IEEE Sens. J. 2012, 12, 3149–3155. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 2021, 360, 115544–115566. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Yang, Y.; Wu, P. Band gap engineering of SnO2 by epitaxial strain: Experimental and theoretical investigations. J. Phys. Chem. C 2014, 118, 6448–6453. [Google Scholar] [CrossRef]
- Rothschild, A.; Komem, Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 2004, 95, 6374–6380. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kai, S.; Takao, Y.; Hyodo, T.; Egashira, M. Correlation between methylmercaptan gas-sensing properties and its surface chemistry of SnO2-based sensor materials. Sens. Actuator B Chem. 2000, 65, 349–357. [Google Scholar] [CrossRef]
- Ren, F.; Gao, L.; Yuan, Y.; Zhang, Y.; Alqrni, A.; Aldossary, O. Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B Chem. 2015, 223, 914–920. [Google Scholar] [CrossRef]
- Wang, H.; Qu, Y.; Chen, H.; Lin, Z.; Dai, K. Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens. Actuators B Chem. 2014, 201, 153–159. [Google Scholar] [CrossRef]
- Gu, C.; Xu, X.; Huang, J.; Wang, W.; Sun, Y.; Liu, J. Porous flower-like SnO2 nanostructures as sensitive gas sensors for volatile organic compounds detection. Sens. Actuators B Chem. 2012, 174, 31–38. [Google Scholar] [CrossRef]
- Vallejos, S.; Gràcia, I.; Bravo, J.; Figueras, E.; Hubálek, J.; Cané, C. Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with Au and Pt nanoparticles. Talanta 2015, 139, 27–34. [Google Scholar] [CrossRef]
- Vallejos, S.; Gràcia, I.; Figueras, E.; Cané, C. Nanoscale Heterostructures Based on Fe2O3@WO3-x Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Appl. Mater. Interfaces 2015, 7, 18638–18649. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, Y.; Li, G.; Wang, X.; Xu, D.; Chen, Z.; Zhang, T.; Wang, J.; Zhang, L. Hierarchically rosette-like In2O3 microspheres for volatile organic compounds gas sensors. Sens. Actuators B Chem. 2013, 178, 302–309. [Google Scholar] [CrossRef]
- Bhowmik, B.; Manjuladevi, V.; Gupta, R.; Bhattacharyya, P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016, 16, 3488–3495. [Google Scholar] [CrossRef]
- Şennik, E.; Alev, O.; Ozturk, Z. The effect of Pd on H2 and VOCs sensing properties of TiO2 nanorods. Sens. Actuators B Chem. 2016, 229, 692–700. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Shi, G.; Liu, J. A research on detection and identification of volatile organic compounds utilizing cataluminescence-based sensor array. Sens. Actuators B Chem. 2013, 177, 1167–1172. [Google Scholar] [CrossRef]
- Baccar, H.; Thamri, A.; Clément, P.; Llobet, E.; Abdelghani, A. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature. Beilstein J. Nanotechnol. 2015, 6, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Thamri, A.; Baccar, H.; Struzzi, C.; Bittencourt, C.; Abdelghani, A.; Llobet, E. MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs. Sci. Rep. 2016, 6, 35130–35142. [Google Scholar] [CrossRef] [PubMed]
- Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for vocs gas sensing. Nanomaterials 2020, 10, 1485. [Google Scholar] [CrossRef]
- Hasani, A.; Dehsari, H.S.; Gavgani, J.N.; Shalamzari, E.K.; Salehi, A.; Afshar Taromi, F.; Mahyari, M. Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim. Acta 2015, 182, 1551–1559. [Google Scholar] [CrossRef]
- Sun, J.; Shu, X.; Tian, Y.; Tong, Z.; Bai, S.; Luo, R.; Li, D.; Liu, C.C. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 2017, 241, 658–664. [Google Scholar] [CrossRef]
- Gurlo, A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154–165. [Google Scholar] [CrossRef]
- Sabu Joshi, T.; Nirav Tomer, V.K. (Eds.) Functional Nanomaterials; Springer: Singapore, 2020; ISBN 978-981-15-4809-3. [Google Scholar]
- Lingmin, Y.; Xinhui, F.; Lijun, Q.; Lihe, M.; Wen, Y. Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl. Surf. Sci. 2011, 257, 3140–3144. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Hassan, H.S.; Elkady, M.F. Semiconductor Nanomaterials for Gas Sensor Applications. In Environmental Nanotechnology Volume 3. Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2020; pp. 305–355. [Google Scholar]
- Nunes, D.; Pimentel, A.; Goncalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Sun, Y.; Feng, Z.; Zhang, G.; Chen, Z.; Zhan, J. Au-deposited porous single-crystalline ZnO nanoplates for gas sensing detection of total volatile organic compounds. RSC Adv. 2016, 6, 37750–37756. [Google Scholar] [CrossRef]
- Nengsih, S.; Ali Umar, A.; Mat Salleh, M.; Yahaya, M. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles. Sains Malays. 2011, 40, 231–235. [Google Scholar]
- Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta 2007, 73, 358–365. [Google Scholar] [CrossRef]
- Subramanian, E.; Jeyarani, B.M.L.; Murugan, C.P.D. Crucial role of undoped/doped state of polyaniline-b-cyclodextrin composite materials in determining sensor functionality toward benzene/toluene toxic vapor. J. Chem. Mater. Res. 2016, 5, 129–134. [Google Scholar]
- Lü, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L. MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, J.; Choi, N.-J.; Song, H.; Lee, D.-S. Nonstoichiometric Co-rich ZnCo2O4 Hollow Nanospheres for High Performance Formaldehyde Detection at ppb Levels. ACS Appl. Mater. Interfaces 2016, 8, 3233–3240. [Google Scholar] [CrossRef]
- Öztürk, S.; Kösemen, A.; Kösemen, Z.A.; Kılınç, N.; Öztürk, Z.Z.; Penza, M. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors. Sens. Actuators B Chem. 2016, 222, 280–289. [Google Scholar] [CrossRef]
- Lee, C.-S.; Dai, Z.; Jeong, S.-Y.; Kwak, C.-H.; Kim, B.-Y.; Kim, D.H.; Jang, H.W.; Park, J.-S.; Lee, J.-H. Monolayer Co3O4 Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds. Chem. A Eur. J. 2016, 22, 7102–7107. [Google Scholar] [CrossRef]
- Liu, D.; Liu, T.; Zhang, H.; Lv, C.; Zeng, W.; Zhang, J. Gas sensing mechanism and properties of Ce-doped SnO2 sensors for volatile organic compounds. Mater. Sci. Semicond. Process. 2012, 15, 438–444. [Google Scholar] [CrossRef]
- Deng, H.; Li, H.; Wang, F.; Yuan, C.; Liu, S.; Wang, P.; Xie, L.; Sun, Y.; Chang, F. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. J. Mater. Sci. Mater. Electron. 2016, 27, 6766–6772. [Google Scholar] [CrossRef]
- Behera, B.; Chandra, S. An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology. Sens. Actuators B Chem. 2016, 229, 414–424. [Google Scholar] [CrossRef]
- Xu, F.; Zhou, C.; Ho, H.P. A rule for operation temperature selection of a conductometric VOC gas sensor based on ZnO nanotetrapods. J. Alloys Compd. 2021, 858, 158294–158303. [Google Scholar] [CrossRef]
- Rella, R.; Spadavecchia, J.; Manera, M.G.; Capone, S.; Taurino, A.; Martino, M.; Caricato, A.P.; Tunno, T. Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens. Actuators B Chem. 2007, 127, 426–431. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.W.; Kim, S.S. Junction-tuned SnO2 nanowires and their sensing properties. J. Phys. Chem. C 2011, 115, 12774–12781. [Google Scholar] [CrossRef]
- Vallejos, S.; Grácia, I.; Chmela, O.; Figueras, E.; Hubálek, J.; Cané, C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuators B Chem. 2016, 235, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Battie, Y.; Ducloux, O.; Thobois, P.; Dorval, N.; Lauret, J.S.; Attal-Trétout, B.; Loiseau, A. Gas sensors based on thick films of semi-conducting single walled carbon nanotubes. Carbon N. Y. 2011, 49, 3544–3552. [Google Scholar] [CrossRef]
- Tasaltin, C.; Basarir, F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators B Chem. 2014, 194, 173–179. [Google Scholar] [CrossRef]
- Šetka, M.; Drbohlavová, J.; Hubálek, J. Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors 2017, 17, 562. [Google Scholar] [CrossRef]
- Penza, M.; Antolini, F.; Antisari Vittori, M. Carbon nanotubes as SAW chemical sensors materials. Sens. Actuators B Chem. 2004, 100, 47–59. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, K.; Kumar, R.T.R. Gas sensors based on two-dimensional materials and its mechanisms. In Fundamentals and Sensing Applications of 2D Materials; Woodhead Publishing: Cambridge, UK, 2019; pp. 205–258. ISBN 9780081025772. [Google Scholar]
- Cho, S.Y.; Koh, H.J.; Yoo, H.W.; Kim, J.S.; Jung, H.T. Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sens. 2017, 2, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Li, X.; Wang, H.; Li, M.; Xi, Y.; Chen, Y.; Wang, J.; Rumyntseva, M.N.; Gaskov, A.M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B Chem. 2018, 256, 992–1000. [Google Scholar] [CrossRef]
- Liu, T.; Cui, Z.; Li, X.; Cui, H.; Liu, Y. Al-Doped MoSe2 Monolayer as a Promising Biosensor for Exhaled Breath Analysis: A DFT Study. ACS Omega 2021, 6, 988–995. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, X.; Gui, Y. First-Principles Insight into a Ru-Doped SnS2 Monolayer as a Promising Biosensor for Exhale Gas Analysis. ACS Omega 2020, 5, 8919–8926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anasori, B.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications; Springer International Publishing: New York, NY, USA, 2019; ISBN 9783030190262. [Google Scholar]
- Lee, E.; Kim, D.-J. Review—Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretical to an Experimental View. J. Electrochem. Soc. 2020, 167, 37515. [Google Scholar] [CrossRef] [Green Version]
- Aghaei, S.M.; Aasi, A.; Farhangdoust, S.; Panchapakesan, B. Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Appl. Surf. Sci. 2021, 536, 147756–147769. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2d materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [Green Version]
- Ou, P.; Song, P.; Liu, X.; Song, J. Superior Sensing Properties of Black Phosphorus as Gas Sensors: A Case Study on the Volatile Organic Compounds. Adv. Theory Simul. 2019, 2, 1800103. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026. [Google Scholar] [CrossRef]
- Fukuoka, S.; Taen, T.; Osada, T. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Japan 2015, 84, 121004–121016. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Wang, D.; Wang, X.; Zhang, D.; Koratkar, N.; Rong, M. Recent advances in phosphorene as a sensing material. Nano Today 2018, 20, 13–32. [Google Scholar] [CrossRef]
- Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia 2003, 7, 63–75. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef] [PubMed]
- Sha, W.; Ni, S.; Zheng, C. Development of cataluminescence sensor system for benzene and toluene determination. Sens. Actuators B Chem. 2015, 209, 297–305. [Google Scholar] [CrossRef]
- Bendahmane, B.; Tomić, M.; Touidjen, N.E.H.; Gràcia, I.; Vallejos, S.; Mansour, F. Influence of Mg doping levels on the sensing properties of SnO2 films. Sensors 2020, 20, 2158. [Google Scholar] [CrossRef]
- Clément, P.; Hafaiedh, I.; Parra, E.J.; Thamri, A.; Guillot, J.; Abdelghani, A.; Llobet, E. Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon N. Y. 2014, 78, 510–520. [Google Scholar] [CrossRef]
- Chen, N.; Li, Q.; Li, Y.; Deng, D.; Xiao, X.; Wang, Y. Facile synthesis and gas sensing performances based on nickel oxide nanoparticles/multi-wall carbon nanotube composite. J. Mater. Sci. Mater. Electron. 2015, 26, 8240–8248. [Google Scholar] [CrossRef]
- Farbod, M.; Joula, M.H.; Vaezi, M. Promoting effect of adding carbon nanotubes on sensing characteristics of ZnO hollow sphere-based gas sensors to detect volatile organic compounds. Mater. Chem. Phys. 2016, 176, 12–23. [Google Scholar] [CrossRef]
- Šetka, M.; Bahos, F.A.; Matatagui, D.; Gràcia, I.; Figueras, E.; Drbohlavová, J.; Vallejos, S. Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring. Sensors 2020, 20, 1432. [Google Scholar] [CrossRef] [Green Version]
- Šetka, M.; Bahos, F.A.; Chmela, O.; Matatagui, D.; Gràcia, I.; Drbohlavová, J.; Vallejos, S. Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature. Sens. Actuators B Chem. 2020, 321, 128573–128582. [Google Scholar] [CrossRef]
- Rujisamphan, N.; Murray, R.E.; Deng, F.; Supasai, T. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application. Appl. Surf. Sci. 2016, 368, 114–121. [Google Scholar] [CrossRef]
- Ge, S.; Zheng, H.; Sun, Y.; Jin, Z.; Shan, J.; Wang, C.; Wu, H.; Li, M.; Meng, F. Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. J. Alloys Compd. 2016, 659, 127–131. [Google Scholar] [CrossRef]
- Vessalli, B.A.; Zito, C.A.; Perfecto, T.M.; Volanti, D.P.; Mazon, T. ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J. Alloys Compd. 2017, 696, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 2017, 244, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Šetka, M.; Bahos, F.A.; Matatagui, D.; Potoček, M.; Kral, Z.; Drbohlavová, J.; Gràcia, I.; Vallejos, S. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sens. Actuators B Chem. 2020, 304, 127337–127346. [Google Scholar] [CrossRef]
- Vessman, J.; Stefan, R.I.; Van Staden, J.F.; Danzer, K.; Lindner, W.; Burns, D.T.; Fajgelj, A.; Müller, H. Selectivity in analytical chemistry: (IUPAC Recommendations 2001). Pure Appl. Chem. 2001. [Google Scholar] [CrossRef]
- Bedia, C.; Cardoso, P.; Dalmau, N.; Garreta-Lara, E.; Gómez-Canela, C.; Gorrochategui, E.; Navarro-Reig, M.; Ortiz-Villanueva, E.; Puig-Castellví, F.; Tauler, R. Chapter Nineteen—Applications of Metabolomics Analysis in Environmental Research. In Comprehensive Analytical Chemistry; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 533–582. ISBN 0166-526X. [Google Scholar]
- Tung, T.T.; Losic, D.; Park, S.J.; Feller, J.F.; Kim, T. Core-shell nanostructured hybrid composites for volatile organic compound detection. Int. J. Nanomed. 2015, 10, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose: Via ammonia exposure: Visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale 2016, 8, 7984–7991. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, X.; Song, L.; Wang, Y.; Wu, X.; Han, N.; Chen, Y. Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Appl. Nano Mater. 2018, 1, 6327–6336. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Liu, J.; Xie, X.; Zou, D.; Li, M.; Liu, J. Sensitive and selective system of benzene detection based on a cataluminescence sensor. Luminescence 2014, 29, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.; Srinives, S.; Rodriquez, A.; Mulchandani, A. Single-walled Carbon Nanotube-Calixarene Based Chemiresistor for Volatile Organic Compounds. Electroanalysis 2018, 30, 2077–2084. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens. Actuators B Chem. 2016, 225, 158–166. [Google Scholar] [CrossRef]
- Zhao, W.; Al-Nasser, L.F.; Shan, S.; Li, J.; Skeete, Z.; Kang, N.; Luo, J.; Lu, S.; Zhong, C.J.; Grausgruber, C.J.; et al. Detection of mixed volatile organic compounds and lung cancer breaths using chemiresistor arrays with crosslinked nanoparticle thin films. Sens. Actuators B Chem. 2016, 232, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Penza, M.; Cassano, G.; Aversa, P.; Antolini, F.; Cusano, A.; Consales, M.; Giordano, M.; Nicolais, L. Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens. Actuators B Chem. 2005, 111–112, 171–180. [Google Scholar] [CrossRef]
- Joseph, Y.; Guse, B.; Vossmeyer, T.; Yasuda, A. Gold nanoparticle/organic networks as chemiresistor coatings: The effect of film morphology on vapor sensitivity. J. Phys. Chem. C 2008, 112, 12507–12514. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Yao, Z.; He, Y.; Li, Z.; Sun, L.; Xie, L. The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 2019, 1, 1319–1330. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.T.; Ismail, R.; Anwar, S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- Wang, J.; Yang, P.; Wei, X. High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 3816–3824. [Google Scholar] [CrossRef]
- Kim, H.-R.; Haensch, A.; Kim, I.-D.; Barsan, N.; Weimar, U.; Lee, J.-H. The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies. Adv. Funct. Mater. 2011, 21, 4456–4463. [Google Scholar] [CrossRef]
- Choi, K.-I.; Kim, H.-J.; Kang, Y.C.; Lee, J.-H. Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis. Sens. Actuators B Chem. 2014, 194, 371–376. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-Assisted CVD-Grown WO3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H2S. ACS Appl. Mater. Interfaces 2015, 7, 6842–6851. [Google Scholar] [CrossRef]
- Niarchos, G.; Dubourg, G.; Afroudakis, G.; Georgopoulos, M.; Tsouti, V.; Makarona, E.; Crnojevic-Bengin, V.; Tsamis, C. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications. Sensors 2017, 17, 516. [Google Scholar] [CrossRef] [Green Version]
- Itoh, T.; Matsubara, I.; Tamaki, J.; Kanematsu, K.; Shin, W.; Izu, N.; Nishibori, M. Effect of High-Humidity Aging on Performance of Tungsten Oxide-Type Aromatic Compound Sensors. Sens. Mater. 2012, 24, 13–19. [Google Scholar]
- Itoh, T.; Matsubara, I.; Kadosaki, M.; Sakai, Y.; Shin, W.; Izu, N.; Nishibori, M. Effects of high-humidity aging on platinum, palladium, and gold loaded tin oxide--volatile organic compound sensors. Sensors 2010, 10, 6513–6521. [Google Scholar] [CrossRef]
- Vallejos, S.; Gràcia, I.; Pizúrová, N.; Figueras, E.; Čechal, J.; Hubálek, J.; Cané, C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B Chem. 2019, 301, 127054–127063. [Google Scholar] [CrossRef]
- Hierlemann, A.; Baltes, H. CMOS-based chemical microsensors. Analyst 2003, 128, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Janata, J. Principles of Chemical Sensors; Springer: New York, NY, USA, 2009; ISBN 978-0-387-69931-8. [Google Scholar]
- Markiewicz, N.; Casals, O.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. Micro light plates for low-power photoactivated (gas) sensors. Appl. Phys. Lett. 2019, 114, 53508–53514. [Google Scholar] [CrossRef] [Green Version]
- Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H. Smart single-chip gas sensor microsystem. Nature 2001, 414, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Comini, E. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices. Sensors 2013, 13, 10659–10673. [Google Scholar] [CrossRef] [Green Version]
- Vallejos, S.; Gràcia, I.; Lednický, T.; Vojkuvka, L.; Figueras, E.; Hubálek, J.; Cané, C. Highly hydrogen sensitive micromachined sensors based on aerosol-assisted chemical vapor deposited ZnO rods. Sens. Actuators B Chem. 2018, 268, 15–21. [Google Scholar] [CrossRef]
- Li, Y.; Delaunay, J.-J.J. Progress Toward Nanowire Device Assembly Technology. In Nanowires; InTech: London, UK, 2010; ISBN 978-953-7619-79-4. [Google Scholar]
- Chmela, O.; Sadílek, J.; Domènech-Gil, G.; Samà, J.; Somer, J.; Mohan, R.; Romano-Rodriguez, A.; Hubálek, J.; Vallejos, S. Selectively arranged single-wire based nanosensor array systems for gas monitoring. Nanoscale 2018, 10, 9087–9096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Ho, J.C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A.C.; Chueh, Y.-L.; Javey, A. Toward the Development of Printable Nanowire Electronics and Sensors. Adv. Mater. 2009, 21, 3730–3743. [Google Scholar] [CrossRef]
- Pavelko, R.G.; Yuasa, M.; Kida, T.; Shimanoe, K.; Yamazoe, N. Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators B Chem. 2015, 210, 719–725. [Google Scholar] [CrossRef]
- Mottram, D.S.; Elmore, J.S. SENSORY EVALUATION | Aroma. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, UK, 2003; pp. 5174–5180. [Google Scholar]
- Turner, A.P.F.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 160–166. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Cipriano, D.; Capelli, L. Evolution of electronic noses from research objects to engineered environmental odour monitoring systems: A review of standardization approaches. Biosensors 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Licht, J.C.; Grasemann, H. Potential of the electronic nose for the detection of respiratory diseases with and without infection. Int. J. Mol. Sci. 2020, 21, 9416. [Google Scholar] [CrossRef]
- Haddi, Z.; El Barbri, N.; Tahri, K.; Bougrini, M.; El Bari, N.; Llobet, E.; Bouchikhi, B. Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Anal. Methods 2015, 7, 5193–5203. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh, H.; Sadeghi, M.; Ghasemi-Varnamkhasti, M.; Mireei, S.A.; Tohidi, M. On the feasibility of metal oxide gas sensor based electronic nose software modification to characterize rice ageing during storage. J. Food Eng. 2019, 245, 1–10. [Google Scholar] [CrossRef]
- Santos, J.P.; Lozano, J.; Aleixandre, M. Electronic Noses Applications in Beer Technology. In Brewing Technology; InTech: London, UK, 2017; pp. 177–203. [Google Scholar]
- Giungato, P.; Laiola, E.; Nicolardi, V. Evaluation of Industrial Roasting Degree of Coffee Beans by Using an Electronic Nose and a Stepwise Backward Selection of Predictors. Food Anal. Methods 2017, 10, 3424–3433. [Google Scholar] [CrossRef]
- Liao, Y.H.; Shih, C.H.; Abbod, M.F.; Shieh, J.S.; Hsiao, Y.J. Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia. Microsyst. Technol. 2020. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wang, Y.C.; Peng, H.Y.; Huang, C.H. Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci. Rep. 2021, 11, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Tozlu, B.H.; Şimşek, C.; Aydemir, O.; Karavelioglu, Y. A High performance electronic nose system for the recognition of myocardial infarction and coronary artery diseases. Biomed. Signal Process. Control 2021, 64, 102247–102255. [Google Scholar] [CrossRef]
- Singh, H.; Raj, V.B.; Kumar, J.; Mittal, U.; Mishra, M.; Nimal, A.T.; Sharma, M.U.; Gupta, V. Metal oxide SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol. Sens. Actuators B Chem. 2014, 200, 147–156. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Y.; Sun, Q.; Zhang, T.; Chen, Y.; Yu, W.; Xiong, Y.; Wei, X.; Yu, G.; Wan, H.; et al. A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuators B Chem. 2021, 326, 128822–128831. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.P.; Su’rez, J.I.; Herrero, J.L.; Aleixandre, M. Detection of pollutants in water using a wireless network of electronic noses. Chem. Eng. Trans. 2016, 54, 157–162. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wu, C.C.; Chou, T.I.; Chiu, S.W.; Tang, K.T. Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification. Sensors 2018, 18, 3256. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl. Mater. Interfaces 2020, 12, 17713–17724. [Google Scholar] [CrossRef] [PubMed]
- Moufid, M.; Hofmann, M.; El Bari, N.; Tiebe, C.; Bartholmai, M.; Bouchikhi, B. Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS. Talanta 2021, 221, 121450–121461. [Google Scholar] [CrossRef]
- Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I. Water pollution recognition with the electronic nose KAMINA. Sens. Actuators B Chem. 2005, 106, 182–186. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Wang, P.; Wang, Q. A high precise E-nose for daily indoor air quality monitoring in living environment. Integr. VLSI J. 2017, 58, 286–294. [Google Scholar] [CrossRef]
- Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier-Lucia, D.; Calderon-Santoyo, M.; Ghommidh, C. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens. Actuators B Chem. 2009, 140, 29–34. [Google Scholar] [CrossRef]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of volatomic profiles for early detection of fungal infection on storage Jasmine brown rice using electronic nose coupled with chemometrics. Meas. J. Int. Meas. Confed. 2020, 157, 107561–107571. [Google Scholar] [CrossRef]
- Seesaard, T.; Thippakorn, C.; Kerdcharoen, T.; Kladsomboon, S. A hybrid electronic nose system for discrimination of pathogenic bacterial volatile compounds. Anal. Methods 2020, 12, 5671–5683. [Google Scholar] [CrossRef]
- Güntner, A.T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S.E. E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sens. 2016, 1, 528–535. [Google Scholar] [CrossRef]
- Potyrailo, R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef]
VOCs Monitoring | |||||||
---|---|---|---|---|---|---|---|
Air Quality | Breath Analysis | ||||||
Anthropogenic VOCs emission | VOCs Profile | Representative Vapor Analytes | TLV (ppm) | Cancer | VOCs Profile | Representative Vapor Analytes | CREB (ppb) |
Alcohols | Methanol Ethanol 1-Propanol | 200 TWA 1000 TWA 200 TWA | Alcohols | Methanol Ethanol 1-Propanol | 157–344 96–2848 4–13 | ||
Ethers | Furan | N/A | |||||
Aldehydes | Formaldehyde Acetaldehyde Propenal | 0.1 TWA 25 C 0.1 C | Aldehydes | Pentanal Heptanal Nonanal | 2–7 2–7 2–107 | ||
Ketones | Acetone 2-Butanone | 250 TWA 200 TWA | Ketones | Acetone 2-Butanone 3-Hydroxy-2-Butanone | 35–1000 0.002–3 0.002–0.05 | ||
Esters | Ethylacetate | 400 TWA | |||||
Carboxylic acid | Acetic acid | 10 TWA | |||||
Alkanes | Ethane Propane Butane Pentane Hexane Heptane Octane Nonane Decane Undecane Dodecane | N/A N/A 1000 TWA 1000 TWA 50 TWA 400 TWA 300 TWA 200 TWA N/A N/A N/A | Alkanes | Pentane 4-Methyloctane | 2–18 16–19 | ||
Alkenes | Ethylene Propylene Butylene 1,3-Butadiene | 200 TWA 500 TWA 250 TWA 2 TWA | Alkenes | Isoprene | 41–109 | ||
Alkynes | Acetylene | N/A | |||||
Aromatics | Benzene Ethylbenzene Styrene Toluene Xylene | 0.5 TWA 20 TWA 10TWA 20 TWA 100 TWA | Aromatics | Ethylbenzene Toluene | 1–18 1–37 | ||
Halohydrocarbons | Chloroform Dichloromethane Dichloroethane Chlorobenzene | 10 TWA 50 TWA 100 TWA 10 TWA | |||||
Other | Acetonitrile Dimethyl disulfide Limonene | 20 TWA 0.5 TWAN/A |
Properties | MOXs | POMs | CbMs | Notes |
---|---|---|---|---|
Sensitivity | High↑↑ | High↑ | High | Advantageous for all materials to specific gases/vapors, although in major degree for MOXs with respect to POMs and CbMs. |
Selectivity | Poor↓ | Poor | Poor | Poor for all materials within a large number of gases/vapors. POMs and CbMs have shown advantages for specific gases such as NH3 and NO2. |
Stability | High | Medium↓ | Medium | More advantageous for MOXs due to operation at high temperatures. The stability of POMs is highly dependent on humidity. |
Speed of response | High | Low | Low | More advantageous for MOXs due to operation at high temperatures. |
Long-lasting lifetime | High | Low↓ | Low | More advantageous for MOXs due to low probability of poisoning and degradation. POMs have more probability of degradations in humid ambient with respect to CbMs. |
Operating temperature | High | Low | Low | More advantageous for POMs and CbMs due to the capacity of adsorption at room temperature. |
Energy consumption | High | Low | Low | More advantageous for POMs and CbMs as they do not require thermal activation. |
Cost | Low↓ | Low | High | More advantageous for MOXs and POMs due to the wider choice of synthesis methods. |
Miniaturization potential | High↑ | High | High | Advantageous for all materials according to the transducing principle. MOXs are more advantageous in this area due to their proved compatibility with micro/nano fabrication processes, although the recent scalable integration methods based on roll-to-roll and printed electronics are facilitating more the scalable integration of POMs and CbMs into miniaturized systems. |
Materials | Morphology | Features | Ref. |
---|---|---|---|
0D | Particles | Diameters of 1–100 nm | [45,48,49,52,65,66,67,68] |
Cubes | Average size of 200 nm | [69] | |
Hollow spheres | Diameter of 72 nm | [70] | |
1D | Rods and needles | Diameters of 100–200 nm and lengths up to 10,000 nm | [48,49,52,71] |
Rings | Diameters of 120 nm (inner) and 180 nm (outer) and lengths of 1000–1500 nm | [40] | |
2D | Sheets and monolayers | Size of 100–400 nm or as large as 30–70 µm and thickness of 10–60 nm | [57,72] |
3D | Porous films | Pore size of 6–150 nm | [36,38,45,46,73] |
Flowers | Sheet size of 120–2000 nm and thickness of 12–50 nm | [37,39,47,50,51,74,75] | |
Tetrapods | Rod diameters of 50 nm and lengths of 1000 nm | [76] |
Material | Morphology | Size, nm | VOCs | c, ppm | T, °C | R | tR, s | tr, s | Ref. |
---|---|---|---|---|---|---|---|---|---|
SnO2 | NPs | 9.1 CS | Butanol | 10 | 150 | 190 | 9 | N/A | [46] |
NPs | 6.1 CS | 150 | 630 | 11 | N/A | ||||
SnO2 | NPs | 6.3 CS | Toluene | 100 | 260 | 9.7 | 3 | 10 | [47] |
NPs com | N/A | 240 | 6.2 | N/A | N/A | ||||
ZnO | NPs com | 10–100 Ø | Ethanol | 100 | N/A | 2.6 | 16 | 100 | [37] |
NShs | 1000 T | N/A | 8.5 | 10 | 80 | ||||
ZnO | NTPs (NRds) | 50 Ø 1000 L | Ethanol | 500 | 340 | 57 | 50 | 70 | [76] |
ZnO | NPs | N/A | Acetaldehyde | 0.05 | 220 | 2 | N/A | N/A | [40] |
NRgs | N/A | 220 | 1.1 | N/A | N/A | ||||
TiO2 | NPs | 10 Ø | Acetone | 200 | 400 | 7.8 | 240 | N/A | [77] |
NShs | 120 L 12–23 T | 700 | 60 | 1.7 | 10 | 45 | [51] | ||
CuO | NShs | 50 T | Ethanol | 0.2 | 250 | 2.1 | 11.2 | 8.4 | [74] |
Co3O4 | cNCs | 2000 S 50 T | Ethanol | 10 | 300 | 1.7 | <10 | <10 | [69] |
ML | 17.6 CS | 5 | 200 | 114 | N/A | N/A | [72] | ||
In2O3 | NShs-hMSp | 20 T | Acetone | 5 | 350 | 1.8 | 4 | 10 | [50] |
NShs-MSp | 20 T | 350 | 1.7 | 4 | 10 | ||||
Co3O4 | HSps | Formaldehyde | 1 | 225 | 1.3 | N/A | N/A | [70] | |
ZnCo2O4 | HSps | 72 Ø | 225 | 7.3 | 149 | 497 | |||
SWCNTs | SWCNTs | 6 Ø 2000 L | Toluene | N/A | RT | 7.5 * | N/A | N/A | [85] |
MWCNTs | MWCNTs | 20 Ø 4000 L | RT | 2.0 * | N/A | N/A |
Material | Loading | VOCs | c, ppm | T, °C | R | tR, s | tr, s | Ref. |
---|---|---|---|---|---|---|---|---|
Au@ZnO | Au 3 at.% | Isoprene | 50 | 360 | 31 | N/A | N/A | [65] |
ZnO | Au 0 at.% | 25 | N/A | N/A | ||||
Au@ZnO | Au 5 at.% | Methanol | 50 | 360 | 21 | 4 | 3 | [65] |
ZnO | Au 0 at.% | 4.8 | N/A | N/A | ||||
Ce-doped SnO2 | Ce 2 at.% | Formaldehyde | 500 | 320 | 10 | 8 | 4 | [73] |
SnO2 | Ce 0 at.% | 28 | 10 | 5 | ||||
Mg-doped SnO2 | Mg 1 at.% | Ethanol | 80 | 160 | 14 | 143 | N/A | [103] |
SnO2 | Mg 0 at.% | 1 | N/A | N/A | ||||
Pd@TiO2 | Pd 12 at.% | Isopropanol | 5000 | 200 | 4.4 | N/A | N/A | [52] |
TiO2 | Pd 0 at.% | 1.6 | N/A | N/A | ||||
Fe2O3@WO3 | Fe 3.9 at.% | Toluene | 100 | 220 | 8 | 150 | 15 | [49] |
Pt@WO3 | Pt 3.7 at.% | 7.8 | 100 | 30 | ||||
WO3 | Fe & Pt 0 at.% | 2.5 | 400 | 170 | ||||
CuO/SnO2 | CuO 3 mol% | Xylene | 50 | 280 | 10 | N/A | N/A | [45] |
SnO2 | CuO 0 mol% | 2.5 | N/A | N/A | ||||
ZnO-CuO | Cu 65 at.% Zn 35 at.% | Acetone | 10 | 300 | 1.2 | 22 | 26 | [75] |
TiO2/SnO2 | N/A | Benzene | 100 | 220 | 13,000 * | N/A | N/A | [102] |
SnO2 | N/A | 5000 * | N/A | N/A | ||||
Pt@MWCNTs | Pt 1.8 at.% | Methanol | 11 | RT | 1.01 | N/A | N/A | [54] |
Pd@MWCNTs | Pd 2.1 at.% | 1.01 | N/A | N/A | ||||
MWCNTs | O plasma treat. | 1.01 | N/A | N/A | ||||
FeO-MWCNTs | Fe 2 at.% | Toluene | 5.8 | RT | 1.02 | 489 | N/A | [104] |
MWCNTs | O plasma treat. | 1.07 | 457 | N/A | ||||
NiO/MWCNTs | N/A | Ethanol | 500 | 180 | 3 | 27 100 | 87 100 | [105] |
NiO | N/A | 1.5 | N/A | N/A | ||||
ZnO/MWCNTs | 0.1 wt.% CNTs | Acetone | 320 | 270 | 62 | 41 | 90 | [106] |
ZnO | 0 wt.% CNTs | 7 | 79 | 108 | ||||
Ag/PPy | 1:10 v.r. | Acetone | 5 | RT | 5 kHz | 150 | 230 | [107] |
PPy | N/A | 3 kHz | 160 | 240 | ||||
CdTe/PPy | 0.03 at.% Cd | Acetone | 5 | RT | 4 kHz | 155 | 270 | [108] |
PPy | N/A | 3.5 kHz | 165 | 290 | ||||
Ti-PTFE | N/A | Acetone | 2000 | RT | 1.03 | N/A | N/A | [109] |
PEDOT-PSS/GO | GO 0.04 wt.% | Methanol | 35 | RT | 11 | 3.2 | 16 | [57] |
PEDOT-PSS | GO 0 wt.% | 1 | N/A | N/A | ||||
PANI PANI-CD | N/A N/A | Benzene | 150 | RT | 45.65 NCC% 57.66 NCC% | N/A | N/A | [68] |
PANI PANI-CD | N/A N/A | Toluene | 46 | RT | 39.36 NCC% 40.68 NCC% | N/A | N/A | [68] |
Ag/SnO2/GO | N/A | Acetone | 150 | 300 | 1.26 | 2 | 8 | [110] |
SnO2/GO | N/A | 1.05 | 3 | 50 | ||||
GO/ZnO | N/A | Acetone | 200 | 450 | 7 | <14 | N/A | [111] |
GO/ZnO/GO | N/A | 7 | <12 | N/A | ||||
ZnO | N/A | 12 | <13 | N/A | ||||
rGO-SnO2 | 23.7 at.% C, 38.4 at.% Sn, 37.9 at.% O | Ethanol | 100 | 300 | 70 | 11 | N/A | [112] |
SnO2 | 14.6 at.% C, 45.2 at.% Sn, 40.2 at.% O | 100 | 300 | 62 | 9 | N/A |
400 °C—100 ppm | 220 °C—1 ppm | 220 °C—500 ppb | 220 °C—100 ppm | 250 °C—87 ppm | 340 °C—500 ppm | 360 °C—50 ppm | RT—N/A | 150 °C—10 ppm | 280 °C—50 ppm | 260 °C—100 ppm | 320 °C—500 ppm | 220 °C—2000 ppm | 220 °C—2000 ppm | 220 °C—2000 ppm | 220 °C—100 ppm | 60 °C—700 ppm | 200 °C—5000 ppm | 350 °C—50 ppm | 250 °C—200 ppb | 300 °C—10 ppm | 250 °C—5 ppm | 210 °C—2000 ppm | 210 °C—2000 ppm | 210 °C—2000 ppm | 210 °C—2000 ppm | 210 °C—800 ppm | 220 °C—100 ppm | 280 °C—50 ppm | 300 °C—10 ppm | 210 °C—2000 ppm | 225 °C—400 ppb | N/A—N/A | RT—3800 ppm | |
Methanol | ❿ | ❸ | ❻ | ❷ | ⓿ | ❻ | ❺ | ❽ | ⓿ | ❸ | ❿ | ❶ | ❶ | ⓿ | ⓿ | ❹ | ❸ | ⓿ | ⓿ | ❻ | ❷ | ❿ | ||||||||||||
Ethanol | ❿ | ❿ | ❿ | ❽ | ❶ | ❿ | ❼ | ❽ | ❶ | ❺ | ❼ | ❼ | ❷ | ❿ | ❿ | ❹ | ❶ | ⓿ | ❸ | ❹ | ❼ | ❻ | ❶ | ❷ | ❼ | |||||||||
Chloroethanol | ❻ | |||||||||||||||||||||||||||||||||
Propanol | ❺ | ❹ | ❶ | ⓿ | ⓿ | ⓿ | ❺ | |||||||||||||||||||||||||||
Butanol | ❿ | ❸ | ❶ | |||||||||||||||||||||||||||||||
Pentanol | ❿ | |||||||||||||||||||||||||||||||||
Ether | ❹ | ❸ | ❽ | ❿ | ❿ | |||||||||||||||||||||||||||||
Diethylether | ❾ | ❶ | ||||||||||||||||||||||||||||||||
Tetrahydrofuran | ❸ | ❹ | ❸ | ❹ | ❸ | |||||||||||||||||||||||||||||
Methane | ❷ | |||||||||||||||||||||||||||||||||
Heptane | ❶ | |||||||||||||||||||||||||||||||||
Octane | ❶ | |||||||||||||||||||||||||||||||||
Decane | ❸ | |||||||||||||||||||||||||||||||||
Isoprene | ❿ | |||||||||||||||||||||||||||||||||
Benzene | ❷ | ⓿ | ❶ | ❽ | ❶ | ❶ | ⓿ | ⓿ | ❷ | ⓿ | ❿ | ❿ | ❻ | ❶ | ❶ | |||||||||||||||||||
Ethylbenzene | ❷ | ❽ | ||||||||||||||||||||||||||||||||
Chlorobenzene | ❶ | ❼ | ❷ | ⓿ | ⓿ | ❷ | ❷ | ❼ | ||||||||||||||||||||||||||
Toluene | ❸ | ❸ | ❶ | ❸ | ⓿ | ❶ | ❿ | ❹ | ❺ | ❷ | ❿ | ⓿ | ❾ | ❷ | ❺ | ⓿ | ⓿ | ❷ | ⓿ | ❹ | ❽ | ⓿ | ❷ | |||||||||||
Xylene | ❶ | ❿ | ❷ | ❼ | ❿ | ⓿ | ⓿ | ❿ | ❿ | |||||||||||||||||||||||||
Chlorophenol | ❾ | |||||||||||||||||||||||||||||||||
Acetone | ❽ | ❹ | ❻ | ❸ | ❷ | ❶ | ⓿ | ❿ | ❻ | ❿ | ❿ | ❿ | ❷ | ❿ | ❿ | ❾ | ❹ | ❸ | ❼ | ❿ | ❺ | ❼ | ❿ | ❸ | ❶ | |||||||||
Butanone | ❸ | ⓿ | ⓿ | |||||||||||||||||||||||||||||||
Formaldehyde | ❸ | ❿ | ❺ | ❷ | ❸ | ❷ | ❶ | ❾ | ❻ | ❶ | ❾ | ❶ | ⓿ | ⓿ | ❶ | ⓿ | ⓿ | ⓿ | ❷ | ❶ | ❿ | |||||||||||||
Acetaldehyde | ❿ | ❿ | ⓿ | ⓿ | ❶ | ❷ | ⓿ | ❶ | ||||||||||||||||||||||||||
Hexaldehyde | ❼ | |||||||||||||||||||||||||||||||||
Ethylacetate | ❽ | ❶ | ❿ | ❿ | ❸ | ❸ | ❷ | |||||||||||||||||||||||||||
Butylacetate | ❺ | |||||||||||||||||||||||||||||||||
Chloroform | ❶ | ❻ | ❶ | ⓿ | ❼ | ❶ | ❶ | |||||||||||||||||||||||||||
Trichloroethylene | ❷ | |||||||||||||||||||||||||||||||||
NH3 | ❻ | ❸ | ⓿ | ❹ | ❻ | ⓿ | ||||||||||||||||||||||||||||
H2 | ❺ | ❿ | ||||||||||||||||||||||||||||||||
NO2 | ❸ | ❶ | ||||||||||||||||||||||||||||||||
CO | ⓿ | ⓿ | ||||||||||||||||||||||||||||||||
H2S | ❺ | |||||||||||||||||||||||||||||||||
ZnO [36] | ZnO [39] | ZnO [40] | ZnO [37] | ZnO [38] | ZnO [76] | Au@ZnO [65] | Pd@ZnO [71] | SnO2 [46] | SnO2 [45] | SnO2 [47] | Ce-dop. SnO2 [73] | WO3 [48] | Au@WO3 [48] | Pt@WO3 [48] | Fe2O3@WO3 [49] | TiO2 [51] | Pd@TiO2 [52] | In2O3 [50] | CuO [74] | Co3O4 [69] | Co3O4 [72] | SiO2 [53] | CeO2 [53] | Y2O3 [53] | La2O3 [53] | Au/La2O3 [119] | TiO2/SnO2 [102] | CuO/SnO2 [45] | ZnO-CuO [75] | SiO2/Fe3O4 [53] | ZnCo2O4 [70] | Au [66] | Ag [67] | |
Response load in% | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |||||||||||||||||||||||
Number | ⓿ | ❶ | ❷ | ❸ | ❹ | ❺ | ❻ | ❼ | ❽ | ❾ | ❿ |
RT—10 ppm | RT—10 ppm | RT—N/A | 250 °C—320 ppm | 250 °C—320 ppm | RT—N/A | 300 °C—500 ppb | RT—N/A | N/A—1000 ppm | RT—N/A | RT—5000 ppm | RT—200 ppm | 300 °C—150 ppm | 450 °C—200 ppm | 450 °C—200 ppm | RT—20 ppm | RT—20 ppm | 180 °C—100 ppm | RT—5 ppm | RT—5 ppm | RT—10 ppm | 300 °C—150 ppm | RT—5 ppm | RT—5 ppm | RT—5 ppm | RT—5 ppm | RT—250 ppm | |
Methanol | ❿ | ❿ | ❿ | ❹ | ❿ | ❸ | ❺ | ❿ | ❾ | ❷ | ❻ | ❷ | ❾ | ❶ | ⓿ | ⓿ | ❻ | ||||||||||
Ethanol | ❾ | ❾ | ❽ | ❹ | ❺ | ❾ | ❺ | ❺ | ❿ | ❿ | ❸ | ❾ | ❽ | ❿ | ❿ | ❿ | ❶ | ⓿ | ⓿ | ❿ | ❾ | ❼ | ❽ | ❻ | |||
Propanol | ❻ | ❿ | ❹ | ❶ | ❾ | ||||||||||||||||||||||
Ether | ❸ | ❶ | |||||||||||||||||||||||||
Furan | ❷ | ||||||||||||||||||||||||||
Hexane | ❷ | ||||||||||||||||||||||||||
Benzene | ❻ | ⓿ | ❸ | ❷ | ❽ | ⓿ | ❶ | ❷ | ❶ | ❷ | |||||||||||||||||
Chlorobenzene | ❶ | ❶ | |||||||||||||||||||||||||
Ethylbenzene | ❾ | ||||||||||||||||||||||||||
Toluene | ❸ | ❿ | ❶ | ❿ | ⓿ | ❿ | ❶ | ❿ | ❿ | ⓿ | ⓿ | ❹ | ❹ | ❹ | ❸ | ❽ | |||||||||||
Xylene | ⓿ | ❿ | |||||||||||||||||||||||||
Acetone | ❸ | ❷ | ❾ | ❿ | ❷ | ❷ | ❿ | ⓿ | ❿ | ❺ | ❷ | ❿ | ❿ | ❿ | ❺ | ❸ | ❾ | ❶ | ❶ | ❷ | ❿ | ❿ | ❿ | ❿ | |||
4M2P | ❽ | ||||||||||||||||||||||||||
Formaldehyde | ❸ | ❽ | ⓿ | ||||||||||||||||||||||||
Ethylacetate | ❹ | ❷ | ❺ | ||||||||||||||||||||||||
Acetic acid | ❺ | ||||||||||||||||||||||||||
Acetonitrile | ❺ | ||||||||||||||||||||||||||
Triethylamine | ❺ | ||||||||||||||||||||||||||
NH3 | ❿ | ⓿ | ❿ | ||||||||||||||||||||||||
H2 | ❹ | ||||||||||||||||||||||||||
CO | ❺ | ||||||||||||||||||||||||||
Water | ❺ | ⓿ | ❷ | ||||||||||||||||||||||||
Pt@MWCNTs [54] | Pd@MWCNTs [54] | PEDOT-PIL@Fe3O4 [116] | ZnO/MWCNTs(0.1 wt.%) [106] | ZnO/MWCNTs(0.05 wt.%) [106] | DT-capped Au [122] | MOF-ZnO [121] | SWCNTs/CdA [123] | Ti-PTFE [109] | Ag-BC-bsh [117] | Au-DT [124] | PEDOT-PSS/UL-GO [57] | Ag/SnO2/GO [110] | GO/ZnO [111] | GO/ZnO/GO [111] | MWCNTs/Au [55] | MWCNTs/Au/MHDA [55] | NiO/MWCNTs [105] | MWCNTs [104] | FeO/MWCNTs [104] | PPy/rGO [58] | rGO/SnO2 [112] | PPy [107] | PPy [108] | Ag/PPy [107] | CdTe/PPy (1:10) [108] | SWCNTs-calixarene [120] | |
Response load in% | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||||||||||||||||
Number | ⓿ | ❶ | ❷ | ❸ | ❹ | ❺ | ❻ | ❼ | ❽ | ❾ | ❿ |
Material | Morphology | Features, nm | Method | Integration | Principle | Ref. |
---|---|---|---|---|---|---|
ZnO | PF | 27 PS | WCS | Transfer | Resistive | [36] |
ZnO | NShs | 200–400 S 10–60 T | WCS | Transfer | Resistive | [39] |
ZnO | NRgs | 180 OØ 120 IØ 1000–1500 L | WCS | Transfer | Resistive | [40] |
ZnO | NShs (NFls) | 1000 S | WCS | Transfer | Resistive | [37] |
ZnO | PF | 33.8 CS | Sputtering | Direct | Resistive | [38] |
ZnO | NTPs (NRds) | 1000 L- NRds 9 Ø- NRds | PVD | Transfer | Resistive | [76] |
Au@ZnO | NPs@NShs | 9 Ø-NPs | WCS PhA | Transfer | Resistive | [65] |
Pd@ZnO | NPs@NRds | 200 Ø-NRds | WCS | Direct | QCM | [71] |
SnO2 | PF | 6–15 Ø-Pores | WCS | Transfer | Resistive | [46] |
SnO2 | PF | 150 Ø-Pores 20 Ø-NPs | WCS MA | Transfer | Resistive | [45] |
SnO2 | NShs | 6.3 CS | WCS | Transfer | Resistive | [47] |
Ce-doped SnO2 | PF | 10.3 CS-SnO2 | WCS | Transfer | Resistive | [73] |
WO3 | NNs | 100 T 10,000 L | CVD | Direct | Resistive | [48] |
Au@WO3 | NPs@NNs | 100 T 10,000 L 3–10 S-NPs | CVD | Direct | Resistive | [48] |
Pt@WO3 | NPs@NNs | 100 T 10,000 L 1–5 S-NPs | CVD | Direct | Resistive | [48] |
Fe2O3@WO3 | NPs@NNs | 5–100 Ø-NNs 10,000 L-NNs 4–15 Ø-NPs | CVD | Direct | Resistive | [49] |
TiO2 | NShs (NFls) | 120 L 12–23 T | WCS | Direct | Resistive | [51] |
Pd@TiO2 | NPs@NRds | 20 Ø-NPs 100 Ø-NRs 4500 L-NRs | CVD + WCS | Direct | Resistive | [52] |
In2O3 | NShs-hMSp (NFls) | 20 T | WCS | Transfer | Resistive | [50] |
CuO | NShs (NFls) | 2000 S 50 T | WCS | Transfer | Resistive | [74] |
Co3O4 | cNCs | 200 S | WCS | Transfer | Resistive | [69] |
Co3O4 | ML | 17.6 CS | WCS | Transfer | Resistive | [72] |
SiO2 | NPs | - | - | Transfer | CTL | [53] |
CeO2 | NPs | - | - | Transfer | CTL | [53] |
Y2O3 | NPs | - | - | Transfer | CTL | [53] |
La2O3 | NPs | - | - | Transfer | CTL | [53] |
Au@La2O3 | NPs@NRds | - | WCS | Transfer | CTL | [119] |
TiO2-SnO2 | PF | - | WCS | Transfer | CTL | [102] |
CuO/SnO2 | PF | 150 Ø−Pores 20 Ø-NPs | WCSMA | Transfer | Resistive | [45] |
ZnO-CuO | NShs | 20–25 T | PVD | Direct | Resistive | [75] |
SiO2/Fe3O4 | NPs | - | - | Transfer | CTL | [53] |
ZnCo2O4 | HSp | 72 Ø | WCS | Transfer | Resistive | [70] |
Au | NPs | 36 Ø | WCS | Transfer | LSPR | [66] |
Ag | NPs | 51 Ø | WCS | Transfer | LSPR | [67] |
Material | Morphology | Features, nm | Method | Integration | Principle | Ref |
---|---|---|---|---|---|---|
Pt@MWCNTs | NPs/MWCNTs | 2 Ø/Up to 50,000 L | CVD | Transfer | Resistive | [54] |
Pd@MWCNTs | NPs/MWCNTs | 3 Ø/Up to 50,000 L | CVD | Transfer | Resistive | [54] |
PEDOT-PIL@Fe3O4 | CSh (LsPEDOT– MNPsPIL@Fe3O4) | 15 S-NPs | WCS | Transfer | Resistive | [116] |
ZnO/MWCNTs | HSpsZnO-MWCNTs | 300–350 Ø-HSps 30–40 T-HSps | WCS | Transfer | Resistive | [106] |
DT-capped Au | MLShsDT NPsAu | 100–300 FT 2–5 Ø- NPs | WCS | Transfer | Resistive | [122] |
MOF-ZnO | NCgs | 100 S-NPs 60 CØ 25 PST | WCS | Transfer | Resistive | [121] |
SWCNTs/CdA | SWCNTs | 1–5 Ø 1000–10,000 L | WCS | Transfer | QCM | [123] |
SWCNTs-calixarene | SWCNTs | - | WCS | Transfer | Resistive | [120] |
PANI-CD | NPs | 100 | WCS | Transfer | Resistive | [68] |
Ti-PTFE | Cls | 10–30 NPs | PVD | Transfer | Resistive | [109] |
Ag-BC-bsh | NPsAg NPp | 10 ± 7 Ø-NPs 45 ± 10 FØ >10,000 L-NPp | WCS | Transfer | LSPR | [117] |
Au-DDDT | NPsAu Ls | 4 Ø-NPs/Up to 60 T-Ls | LBL-SA | Transfer | Resistive | [124] |
PEDOT-PSS/UL-GO | NShsUL-GO PF | 10,000–300,000 S-UL-GO | PVD | Transfer | Resistive | [57] |
Ag/SnO2/GO | NPsAg | - | WCS | Transfer | Resistive | [110] |
GO/ZnO | NRdsZnO NShsGO | 640 L-ZnO | WCS | Transfer | Resistive | [111] |
GO/ZnO/GO | NRdsZnO NShsGO | 640 L-ZnO | WCS | Transfer | Resistive | [111] |
MWCNTs/Au | MCWNTs-NPsAu | Up to 50,000 L-MWCNTs 3–15 OØ-MWCNTs 3–7 IØ-MWCNTs 2 Ø-Au | CVD/WCS | Transfer | Resistive | [55] |
MWCNTs/Au/MHDA | MCWNTs-NPsAu-MLMHDA | Up to 50,000 L-MWCNTs 3–15 OØ-MWCNTs 3–7 IØ-MWCNTs 2 Ø-Au | CVD/WCS | Transfer | Resistive | [55] |
NiO/MWCNTs | NPs/MWCNTs | 25 Ø-NPs 20–35 Ø-MWCNT | WCS | Transfer | Resistive | [105] |
O2/MWCNTs | MWCNTs | 50,000 L-MWCNTs 3–15 OØ-MWCNTs 3–7 IØ-MWCNTs | CVD | Transfer | Resistive | [104] |
FeO/MWCNTs | MWCNTs | 50,000 L-MWCNTs 3–15 OØ-MWCNTs 3–7 IØ-MWCNTs | CVD | Transfer | Resistive | [104] |
PPy/rGo | NPs−PPy/NShs−rGO | 80 Ø-NPs | WCS | Transfer | Resistive | [58] |
rGO/SnO2 | NShs−rGO/NPs−SnO2 | 6–10 Ø-NPs | WCS | Transfer | Resistive | [112] |
Ag/PPy | NPs | 17 ± 3 S-Au-NPs 44 ± 10 S-PPy-NPs | WCS | Transfer | SAW | [107] |
CdTe/PPy | QDs−CdTe/NPs−PPy | 3.1 ± 0.7 S-QDs 35–55 S-NPs | WCS | Transfer | SAW | [108] |
Area | Objective | Sensor Elements | Number | Analytes | Algorithms | Ref. |
---|---|---|---|---|---|---|
Air quality and security | Indoor identification of low formaldehyde concentrations | Commercial MOX-Resistive | 5 | Formaldehyde | BP-ANN | [167] |
Identification of binary mixture: DMMP (ppb level) and methanol (sub ppm level) | Experimental MOX-Resistive MOX-SAW | 4 | DMMP, Methanol | PCA, ANN | [160] | |
Detection of mixed indoor hazardous gases | Commercial MOX-Resistive | 6 | Methane, Formaldehyde, CO, Hydrogen | PCA, LDA, BP-ANN | [161] | |
Water quality | Discrimination polluted from clean water | Commercial MOX-Resistive | 6 | Propanol, Phenol, TFB, Benzene | PCA, HCA, SVM | [165] |
Identification of pollutants in water | Commercial MOX-Resistive | 8 | Ethanol, Acetone, Toluene, Ammonia, Ethylacetate | PCA, ANN, RBF-ANN, BP-ANN | [162] | |
Identification of pollutants in water | Commercial MOX-Resistive | N/A | Chloroform Ammonia | PCA, LDA | [166] | |
Food quality | Off-flavors detection in alcoholic beverage (wine, beer) | N/A MOX-Resistive | 18 | Ethylacetate, TCA, 4-EP, Hexanol, Octenol, Diacetyl, BD | PCA, DFA | [168] |
Rice quality assessment—early detection of fungal infection | Commercial MOX-Resistive | 12 | Cotane, 2-pentylfuran, Dodecane, Toluene, Decane, Ethanol | PCA, LDA, SVM, PLS | [169] | |
Fruit ripeness classification | Commercial MOX-Resistive * | 7 | Alkanes, Alcohols, Esters | PCA, LDA | [163] | |
Healthcare/medicine | Discrimination of pathogenic bacterial VOCs | Commercial MOX-Resistive Experimental OINCs-Resistive | 6 | Acetone, Formaldehyde, Ammonia, Ethanol, Ethylacetate, Acetic acid | PCA, CA | [170] |
Lung cancer and renal failure diagnosis | Experimental CbMs-Resistive | 8 | Acetone, Isoprene, Ammonia, Hydrothion | PCA, LDA | [164] | |
Lung cancer diagnosis | Experimental MOX-Resistive | 4 | Formaldehyde | MVLR | [171] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. https://doi.org/10.3390/nano11020552
Tomić M, Šetka M, Vojkůvka L, Vallejos S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials. 2021; 11(2):552. https://doi.org/10.3390/nano11020552
Chicago/Turabian StyleTomić, Milena, Milena Šetka, Lukaš Vojkůvka, and Stella Vallejos. 2021. "VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials" Nanomaterials 11, no. 2: 552. https://doi.org/10.3390/nano11020552
APA StyleTomić, M., Šetka, M., Vojkůvka, L., & Vallejos, S. (2021). VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials, 11(2), 552. https://doi.org/10.3390/nano11020552