Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management
Abstract
:1. Introduction
2. Research approach
2.1. Materials
2.2. Experiment Apparatus and Procedures
2.3. Thermodynamic Methods
3. Results
3.1. Specific Retention Volume
3.2. Partition Coefficient
3.3. Infinite Dilution Activity Coefficients
3.4. Enthalpy of Solution, ΔH0
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jing, Y.; Maria, E. Extended Environmental Multimedia Modelling System assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones. J. Hazard. Mater. 2020. [Google Scholar] [CrossRef]
- Bian, X.Y.; Mbadinga, S.M.; Liu, Y.F.; Yang, S.Z.; Liu, J.F.; Ye, R.Q.; Gu, J.D.; Mu, B.Z. Insights into the anaerobic biodegradation pathway of n-Alkanes in oil reservoirs by detection of signature metabolites. Sci. Rep. 2015, 5, 9801. [Google Scholar] [CrossRef]
- Brandl, F.; Bertrand, N.; Lima, E.M.; Langer, R. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nat. Commun. 2015, 6, 7765. [Google Scholar] [CrossRef]
- Components, T.; Ansari, N. Thermogravimetric Analysis of Solvent Interaction with Model TSRU Tailings Components. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2013. [Google Scholar]
- Yuan, J.; Wang, X.; Vakili, M.; Segun, G.A.; Zhong, L. Volatile organic compounds (VOCs) releasing model from tailings solvent recovery unit (TSRU) tailings and its sensitivity analysis in environment management. Process Saf. Environ. Prot. 2020. [Google Scholar] [CrossRef]
- Rajabi, H.; Mosleh, M.H.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processing—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef] [Green Version]
- Davda, R.R.; Shabaker, J.W.; Huber, G.W.; Cortright, R.D.; Dumesic, J.A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B Environ. 2005, 56, 171–186. [Google Scholar] [CrossRef]
- Mohamed, R.S.; Ramos, A.C.S.; Loh, W. Aggregation behavior of two asphaltenic fractions in aromatic solvents. Energy Fuels 1999, 13, 323–327. [Google Scholar] [CrossRef]
- Eyssautier, J.; Levitz, P.; Espinat, D.; Jestin, J.; Gummel, J.; Grillo, I.; Barré, L. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. J. Phys. Chem. B 2011, 115, 6827–6837. [Google Scholar] [CrossRef]
- Betancourt, S.S.; Ventura, G.T.; Pomerantz, A.E.; Viloria, O.; Dubost, F.X.; Zuo, J.; Monson, G.; Bustamante, D.; Purcell, J.M.; Nelson, R.K.; et al. Nanoaggregates of asphaltenes in a reservoir crude oil and reservoir connectivity. Energy Fuels 2009, 23, 1178–1188. [Google Scholar] [CrossRef]
- Headen, T.F.; Boek, E.S.; Skipper, N.T. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy Fuels 2009, 23, 1220–1229. [Google Scholar] [CrossRef]
- Caetano, M.; Ranaudo, M.; Jaimes, B. Simulation of asphaltene aggregation and related properties using an equilibrium-based mathematical model. Energy Fuels 2011, 25, 3544–3551. [Google Scholar]
- Castillo, J.; Hung, J.; Fernández, A.M.V. Nonlinear optical evidence of aggregation in asphaltene—Toluene solutions. Fuel 2001, 80, 1239–1243. [Google Scholar] [CrossRef]
- Gawrys, K.L.; Kilpatrick, P.K. Asphaltene aggregation: Techniques for analysis. Instrum. Sci. Technol. 2003, 32, 247–253. [Google Scholar] [CrossRef]
- Rossini, F.D.; Bureau, N.; Eyring, H. Thermodynamic properties of hydrocarbons. Encycl. Hydrocarb. 2005, V, 77–94. [Google Scholar]
- Pathak, M.; Kweon, H.; Deo, M.; Huang, H. Kerogen Swelling and Confinement: Its implication on Fluid Thermodynamic Properties in Shales. Sci. Rep. 2017, 7, 12530. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhong, L.; Vakili, M.; Segun, G.A. New modeling method to simulate asphaltenes at oil sands process in water management. J. Mol. Graph. Model. 2019, 91, 1–9. [Google Scholar] [CrossRef]
- Shekaari, H.; Zafarani-moattar, M.T.; Shayanfar, A.; Mokhtarpour, M. Effect of choline chloride/ethylene glycol or glycerol as deep eutectic solvents on the solubility and thermodynamic properties of acetaminophen. J. Mol. Liq. 2018, 249, 1222–1235. [Google Scholar] [CrossRef]
- Kooijman, H.A.; Taylor, R. Estimation of Diffusion Coefficients in Multicomponent Liquid Systems. Ind. Eng. Chem. Res. 1991, 30, 1217–1222. [Google Scholar] [CrossRef]
- Yuan, J.; Elektorowicz, M.; Chen, Z.; Segun, G.A.; Vakili, M.; Zhong, L.; Wang, B.; Zhu, J.; Wu, Y. Simulation and computer modeling of asphaltene in different solvents on oil-water interfaces using a molecular dynamic methodology. J. Mol. Graph. Model. 2019, 93, 107450. [Google Scholar] [CrossRef]
- Öztürk, E.; Ocak, H.; Cakar, F.; Karanlık, G.; Cankurtaran, Ö.; Bılgın-Eran, B. Investigation of thermodynamic properties of 4-decyloxybiphenyl-4’-carboxylic acid liquid crystal and preparation of polymer dispersed liquid crystal composite. J. Mol. Liq. 2018, 265, 24–30. [Google Scholar] [CrossRef]
- Belov, N.A.; Safronov, A.P.; Yampolskii, Y.P. Thermodynamics of sorption in an amorphous perfluorinated copolymer AF1600 studied by inverse gas chromatography. Macromolecules 2011, 44, 902–912. [Google Scholar] [CrossRef]
- Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography. J. Chem. Eng. Data 2002. [Google Scholar] [CrossRef]
- Belov, N.A.; Nizhegorodova, Y.A.; Kim, S.; Han, S.H.; Yampolskii, Y.P.; Lee, Y.M. Inverse Gas Chromatographic Study of Sorption Thermodynamics in Thermally Rearranged Polymer Based on 2,2-Bis(3-amino-4-hydroxyphenyl)-hexafluoropropane and 4,4′-Hexafluoroisopropylidene Diphthalic Anhydride. Ind. Eng. Chem. Res. 2013. [Google Scholar] [CrossRef]
- Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 2001. [Google Scholar] [CrossRef]
- Mutelet, F.; Jaubert, J.N.; Rogalski, M.; Harmand, J.; Sindt, M.; Mieloszynski, J.L. Thermodynamic Properties of Mixtures Containing Ionic Liquids: Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. J. Chem. Eng. Data 2006. [Google Scholar] [CrossRef]
- Angle, C.W.; Long, Y.; Hamza, H.; Lue, L. Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions. Fuel 2006, 85, 492–506. [Google Scholar] [CrossRef]
- Yao, M.; Woo, Y.C.; Tijing, L.D.; Choi, J.S.; Shon, H.K. Effects of volatile organic compounds on water recovery from produced water via vacuum membrane distillation. Desalination 2018, 440, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Hicks, C.P.; Young, C.L. Activity coefficients of C4–C8 n-alkanes in C16–C32 n-alkanes. Trans. Faraday Soc. 1968, 64, 2675–2682. [Google Scholar] [CrossRef]
- Marcinkowski, Ł.; Eichenlaub, J.; Ghasemi, E.; Polkowska, Ż.; Kloskowski, A. Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes in the Ionic Liquids N-Ethyl- and N-Octyl-N-methylmorpholinium Bis(trifluoromethanesulfonyl)imide. A Useful Tool for Solvent Selection. Molecules 2020, 25, 634. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.X.; Gong, Q.; Huang, L.L. Measurement of activity coefficient at infinite dilution of hydrocarbons in sulfolane using gas-liquid chromatography. J. Chem. Eng. Data 2007, 52, 1459–1463. [Google Scholar] [CrossRef]
- Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Thermodyn. 2002, 34, 1341–1347. [Google Scholar] [CrossRef]
- Xu, Y. Thermodynamic Investigations: Gases and Vapors in Liquids, Calorimetric Studies. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 1990. [Google Scholar]
- Mundhwa, M.; Elmahmudi, S.; Maham, Y.; Henni, A. Molar heat capacity of aqueous sulfolane, 4-formylmorpholine, 1-methyl-2-pyrrolidinone, and triethylene glycol dimethyl ether solutions from (303.15 to 353.15) K. J. Chem. Eng. Data 2009, 54, 2895–2901. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Rychlicki, G.; Kowalczyk, P. Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem. Phys. Lett. 2006, 421, 409–414. [Google Scholar] [CrossRef]
- Milne, G.W.A. (Ed.) Gardner’s Commercially Important Chemicals: Synonyms, Trade Names, and Properties; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Grigoryev, B.A.; Rastorguyev, Y.L.; Kurumov, D.S.; Gerasimov, A.A.; Kharin, V.E.; Plotnikov, S.A. Thermodynamic properties of n-pentane. Int. J. Thermophys. 1990, 11, 487–502. [Google Scholar] [CrossRef]
- Ulmschneider, M.B.; Ulmschneider, J.P.; Schiller, N.; Wallace, B.A.; Von Heijne, G.; White, S.H. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef]
- Daniel, R.; Edgar, F.; Wiley, G.C.J. The Chemical Thermodynamics of Organic Compounds. J. Chem. Thermodyn. 1970, 2, 153–154. [Google Scholar]
- Clarke, E.C.W.; Glew, D.N. Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 1966, 62, 539–547. [Google Scholar] [CrossRef]
- Everett, D.H.; Wynne-Jones, W.F.K. The thermodynamics of acid-base equilibria. Trans. Faraday Soc. 1939, 35, 1380–1401. [Google Scholar] [CrossRef]
- Uffink, J. Compendium of the foundations of classical statistical physics. Philos. Phys. 2006. [Google Scholar]
- Harned, H.S.; Robinson, R.A. A note on the temperature variation of the ionisation constants of weak electrolytes. Trans. Faraday Soc. 1940, 36, 973–978. [Google Scholar] [CrossRef]
- Duffin, L.; Wang, X.; Stoesz, J. Detection of Volatile Organic Compounds in Froth Multiphase Systems from Oil Sands Operations Using a Headspace GC-MS Method. Energy Fuels 2017, 31, 11925–11931. [Google Scholar] [CrossRef]
- Heintz, A.; Lehmann, J.K.; Wertz, C. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 3. Liquid−Liquid Equilibria of Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with Propan-1-ol, Butan-1-ol, and Pentan-1-ol. J. Chem. Eng. Data 2003, 472–474. [Google Scholar] [CrossRef]
- Voelkel, A. Inverse gas chromatography in characterization of surface. Chemom. Intell. Lab. Syst. 2004, 72, 205–207. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Li, L.; Deng, L.; Zhang, Z.; Tian, L. Determination of the thermodynamic parameters of ionic liquid 1-hexyl-3-methylimidazolium chloride by inverse gas chromatography. J. Mol. Liq. 2014, 200, 139–144. [Google Scholar] [CrossRef]
iC5 | n-pentane (nC5) | n-hexane (nC6) | n-heptane (nC7) | Toluene | |
---|---|---|---|---|---|
Boiling point °C | 27.8–28.2 | 36.1 | 68.7 | 98.42 | 110–111 |
Molecular Formula | C5H12 | C5H12 | C6H14 | C7H16 | C6H5CH3 |
Molecular weight (g/mol) | 72.15 | 72.15 | 86.18 | 100.21 | 92.14 |
Vapor Pressure (kPa) (at 20 °C) | 76.992 | 57.90 | 17.60 | 5.33 | 2.8 |
Density @ 25 °C(g/cm3) | 0.616 | 0.626 | 0.655 | 0.684 | 0.865 |
Samples for Chromosorb Coating | Bitumen Molecular Weight, g/mol | Weight of Coated Chromosorb, g | Asphaltene Content in Bitumen, wt% | Bitumen Loading, wt% | Bitumen Loading WL, g | |
---|---|---|---|---|---|---|
Bitumen from different S/B | 1.7 | 442 | 11.8 | 9.9 | 4.4 | 0.52 |
1.7 | 442 | 12 | 9.9 | 2.6 | 0.32 | |
1.7 | 442 | 12.1 | 9.9 | 10.3 | 1.25 | |
3.5 | 379 | 11.6 | 2.6 | 7.7 | 0.89 | |
3.5 | 379 | 11.6 | 2.6 | 3.1 | 0.36 | |
3.5 | 379 | 12.2 | 2.6 | 13.7 | 1.67 | |
40 | 359 | 11.6 | 0 | 6.0 | 0.70 | |
40 | 359 | 12 | 0 | 2 | 0.24 | |
40 | 359 | 12.1 | 0 | 14.5 | 1.76 | |
Asphaltenes from different S/B | 1.7 | 1113 | 12.8 | 53.7 | 1.3 | 0.17 |
1.7 | 1113 | 13 | 53.7 | 2.4 | 0.31 | |
3.5 | 781 | 12.3 | 36.9 | 1.6 | 0.19 | |
3.5 | 781 | 11.8 | 36.9 | 3.0 | 0.35 |
Column Temperature, K | (mL/g) | Column Temperature, K | (mL/g) | ||
---|---|---|---|---|---|
nC5 | nC7 | ||||
323.15 | 19.4 | 18.7 | 323.15 | 136.8 | |
333.15 | 14.7 | 14.3 | 333.15 | 94.1 | 92.1 |
343.15 | 11.4 | 11.2 | 343.15 | 65.8 | |
353.15 | 9.1 | 8.86 | 353.15 | 47.3 | 46.7 |
363.15 | 7.4 | 7.2 | 363.15 | 35.1 | 34.4 |
373.15 | 6.1 | 5.86 | 373.15 | 26.5 | 26.3 |
383.15 | 4.9 | 3.99 | 383.15 | 20.3 | |
393.15 | 4.1 | 3.36 | 393.15 | 15.8 | 15.8 |
nC6 | Toluene | ||||
323.15 | 51.2 | 333.15 | 249.9 | 245 | |
333.15 | 37.1 | 37.1 | 343.15 | 171.9 | |
343.15 | 27.2 | 353.15 | 120.3 | 120 | |
353.15 | 20.5 | 20.7 | 363.15 | 87.3 | |
363.15 | 16.0 | 16.3 | 373.15 | 64.7 | 66.2 |
373.15 | 12.6 | 12.6 | 383.15 | 48.8 | 49.1 |
383.15 | 10.0 | 393.15 | 37.5 | 38.1 | |
393.15 | 8.0 | 8.04 |
Asphaltene Content, wt% | 0 | 2.56 | 9.93 | 21.2 | 36.86 | 53.67 | 84.2 |
---|---|---|---|---|---|---|---|
Column Temperature, K * | |||||||
γof iC5 | |||||||
303.15 | 1.31 | 1.33 | 1.37 | 1.71 | 2.46 | ||
313.15 | 1.26 | 1.28 | 1.31 | 1.62 | 2.15 | ||
323.15 | 1.23 | 1.25 | 1.26 | 1.39 | 1.57 | 1.99 | 3.47 |
333.15 | 1.20 | 1.22 | 1.23 | 1.34 | 1.52 | 1.87 | 3.29 |
343.15 | 1.18 | 1.19 | 1.19 | 1.30 | 1.48 | 1.77 | 3.13 |
353.15 | 1.14 | 1.15 | 1.16 | 1.24 | 1.45 | 1.67 | 3.12 |
363.15 | 1.10 | 1.11 | 1.11 | 1.18 | 1.41 | 1.58 | 3.11 |
373.15 | 1.05 | 1.06 | 1.08 | 1.12 | 1.34 | 1.41 | 2.86 |
383.15 | 1.02 | 1.02 | 1.05 | 1.10 | 1.29 | 1.35 | 2.73 |
393.15 | 0.99 | 1.00 | 1.01 | 1.06 | 1.25 | 1.27 | 2.53 |
γ of nC5 | |||||||
303.15 | 1.24 | 1.26 | 1.29 | 1.60 | 2.16 | ||
313.15 | 1.21 | 1.23 | 1.25 | 1.54 | 2.03 | ||
323.15 | 1.19 | 1.20 | 1.22 | 1.33 | 1.50 | 1.95 | 2.93 |
333.15 | 1.17 | 1.18 | 1.19 | 1.30 | 1.47 | 1.87 | 3.04 |
343.15 | 1.14 | 1.16 | 1.17 | 1.28 | 1.44 | 1.82 | 3.09 |
353.15 | 1.12 | 1.14 | 1.14 | 1.23 | 1.42 | 1.74 | 3.20 |
363.15 | 1.09 | 1.10 | 1.10 | 1.19 | 1.37 | 1.69 | 3.25 |
373.15 | 1.05 | 1.07 | 1.07 | 1.14 | 1.30 | 1.62 | 3.17 |
383.15 | 1.04 | 1.03 | 1.05 | 1.14 | 1.26 | 1.55 | 3.12 |
393.15 | 1.00 | 1.01 | 1.02 | 1.11 | 1.22 | 1.48 | 2.85 |
γof nC6 | |||||||
333.15 | 1.26 | 1.28 | 1.30 | 1.45 | 1.61 | 2.08 | |
343.15 | 1.24 | 1.26 | 1.28 | 1.44 | 1.58 | 2.01 | |
353.15 | 1.22 | 1.24 | 1.27 | 1.41 | 1.55 | 1.93 | |
363.15 | 1.20 | 1.22 | 1.24 | 1.37 | 1.51 | 1.86 | |
373.15 | 1.17 | 1.19 | 1.21 | 1.34 | 1.46 | 1.77 | |
383.15 | 1.16 | 1.16 | 1.19 | 1.33 | 1.42 | 1.71 | |
393.15 | 1.14 | 1.15 | 1.16 | 1.30 | 1.39 | 1.68 | |
γof nC7 | |||||||
333.15 | 1.34 | 1.36 | 1.40 | 1.55 | 1.74 | 2.31 | |
343.15 | 1.33 | 1.35 | 1.38 | 1.54 | 1.71 | 2.23 | 4.07 |
353.15 | 1.31 | 1.33 | 1.36 | 1.53 | 1.69 | 2.15 | 4.27 |
363.15 | 1.29 | 1.31 | 1.34 | 1.50 | 1.66 | 2.07 | 4.37 |
373.15 | 1.27 | 1.29 | 1.31 | 1.47 | 1.61 | 2.00 | 4.28 |
383.15 | 1.25 | 1.27 | 1.30 | 1.45 | 1.60 | 1.95 | 4.27 |
393.15 | 1.23 | 1.25 | 1.28 | 1.44 | 1.57 | 1.91 | 4.12 |
γ of Toluene | |||||||
333.15 | 0.83 | 0.84 | 0.84 | 0.91 | 0.96 | 1.14 | 1.75 |
343.15 | 0.82 | 0.83 | 0.83 | 0.90 | 0.95 | 1.12 | 1.89 |
353.15 | 0.81 | 0.82 | 0.82 | 0.90 | 0.94 | 1.10 | 1.99 |
363.15 | 0.80 | 0.81 | 0.81 | 0.89 | 0.93 | 1.09 | 2.04 |
373.15 | 0.79 | 0.80 | 0.80 | 0.88 | 0.92 | 1.06 | 2.04 |
383.15 | 0.78 | 0.79 | 0.79 | 0.87 | 0.91 | 1.05 | 2.05 |
393.15 | 0.77 | 0.78 | 0.78 | 0.86 | 0.90 | 1.04 | 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Sun, Y.; Jia, Y.; Zhang, Q. Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management. Nanomaterials 2021, 11, 709. https://doi.org/10.3390/nano11030709
Yuan J, Sun Y, Jia Y, Zhang Q. Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management. Nanomaterials. 2021; 11(3):709. https://doi.org/10.3390/nano11030709
Chicago/Turabian StyleYuan, Jing, Yuyong Sun, Yong Jia, and Qianfeng Zhang. 2021. "Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management" Nanomaterials 11, no. 3: 709. https://doi.org/10.3390/nano11030709
APA StyleYuan, J., Sun, Y., Jia, Y., & Zhang, Q. (2021). Thermodynamic Properties Investigation of Process Volatile Organic Compounds (VOCs) and Its Transport Impact Factor in Oil Sands Management. Nanomaterials, 11(3), 709. https://doi.org/10.3390/nano11030709