The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Fabrication of CNTF/MPC Nanocomposites
2.3. Material Characterizations and Testing
3. Results and Discussion
3.1. Mechanical Properties of CNTF/MPC Composite
3.2. Structure Evolution of CNTF/MPC Composite
3.3. Pyrolysis Performance and High Temperature Tolerance
3.4. Conductivity Performance and the Temperature Dependence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gohardani, O.; Elola, M.C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 2014, 70, 42–68. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H.; Rateick, R. Damage tolerance of carbon-carbon composites in aerospace application. Carbon 2018, 126, 382–393. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Ge, Y.; Ran, L.; Peng, K.; Yi, M. Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 480–488. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, C.; Zhang, H. A micro-image based reconstructed finite element model of needle-punched C/C composite. Compos. Sci. Technol. 2017, 153, 48–61. [Google Scholar] [CrossRef]
- Sharma, R.; Ravikumar, N.L.; Dasgupta, K.; Chakravartty, J.K.; Kar, K.K. Advanced Carbon-Carbon Composites: Processing Properties and Applications. In Composite Materials; Kar, K.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 315–367. [Google Scholar]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-Nanotube-Based Electrical Conductors: Fabrication, Optimization, and Applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Li, M.; Gu, Y.; Zhang, Y.; Li, Q.; Zhang, Z. Ultrastrong carbon nanotube/bismaleimide composite film with super-aligned and tightly packing structure. Compos. Sci. Technol. 2015, 117, 176–182. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, R.; Ye, X.; Zhu, Z.; Xie, H.; Shen, B.; Cai, D.; Liu, B.; Zhang, C.; Jia, Z.; et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Oluwalowo, A.; Nguyen, N.; Zhang, S.; Park, J.G.; Liang, R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon 2019, 146, 224–231. [Google Scholar] [CrossRef]
- Nguyen, N.; Zhang, S.; Oluwalowo, A.; Park, J.G.; Yao, K.; Liang, R. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. Acs Appl. Mater. Interfaces 2018, 10, 27171–27177. [Google Scholar] [CrossRef]
- Feng, L.; Fu, Q.; Song, Q.; Yang, Y.; Zuo, Y.; Suo, G.; Hou, X.; Zhang, L.; Ye, X. A novel continuous carbon nanotube fiber/carbon composite by electrified preform heating chemical vapor infiltration. Carbon 2020, 157, 640–648. [Google Scholar] [CrossRef]
- Islam, M.S.; Deng, Y.; Tong, L.; Faisal, S.N.; Gomes, V.G. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications. Carbon 2016, 96, 701–710. [Google Scholar] [CrossRef]
- Jin, X.; Tan, H.; Wu, Z.; Liang, J.; Miao, W.; Lian, C.-S.; Wang, J.; Liu, K.; Wei, H.; Feng, C.; et al. Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. Nano Lett. 2019, 19, 6756–6764. [Google Scholar] [CrossRef]
- Qiu, L.; Zou, H.; Wang, X.; Feng, Y.; Zhang, X.; Zhao, J.; Zhang, X.; Li, Q. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 2019, 141, 497–505. [Google Scholar] [CrossRef]
- Cai, J.; Naraghi, M. Non-intertwined graphitic domains leads to super strong and tough continuous 1D nanostructures. Carbon 2018, 137, 242–251. [Google Scholar] [CrossRef]
- Gao, X.; Liu, L.; Guo, Q.; Shi, J.; Zhai, G. Fabrication and mechanical/conductive properties of multi-walled carbon nanotube (MWNT) reinforced carbon matrix composites. Mater. Lett. 2005, 59, 3062–3065. [Google Scholar] [CrossRef]
- Song, Y.; Zhai, G.; Shi, J.; Guo, Q.; Liu, L. Carbon nanotube: Carbon composites with matrix derived from oxidized mesophase pitch. J. Mater. Sci. 2007, 42, 9498–9500. [Google Scholar] [CrossRef]
- Dietrich, S.; Gebert, J.M.; Stasiuk, G.; Wanner, A.; Weidenmann, K.A.; Deutschmann, O.; Tsukrov, I.; Piat, R. Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions. Compos. Sci. Technol. 2012, 72, 1892–1900. [Google Scholar] [CrossRef]
- Faraji, S.; Stano, K.; Rost, C.; Maria, J.-P.; Zhu, Y.; Bradford, P.D. Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon 2014, 79, 113–122. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Y.; Zhang, Q.; Zhang, R.; Li, P.; Qian, W.; Wei, F. Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures. Nanoscale 2013, 5, 6181–6186. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.-M.; Li, Z.; Li, D.; Bai, X.-D.; Liang, J. Fabrication and structure: A study of aligned carbon nanotube/carbon nanocomposites. Solid State Commun. 2004, 131, 399–404. [Google Scholar] [CrossRef]
- Faraji, S.; Yildiz, O.; Rost, C.; Stano, K.; Farahbakhsh, N.; Zhu, Y.; Bradford, P.D. Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 2017, 111, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ci, L.; Kar, S.; Soldano, C.; Kilpatrick, S.J.; Ajayan, P.M. Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon 2007, 45, 847–851. [Google Scholar] [CrossRef]
- Park, J.G.; Yun, N.G.; Park, Y.B.; Liang, R.; Lumata, L.; Brooks, J.S.; Zhang, C.; Wang, B. Single-walled carbon nanotube buckypaper and mesophase pitch carbon/carbon composites. Carbon 2010, 48, 4276–4282. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Liu, H. Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging. J. Mater. Sci. 2018, 53, 11027–11037. [Google Scholar] [CrossRef]
- Stein, I.Y.; Wardle, B.L. Morphology and processing of aligned carbon nanotube carbon matrix nanocomposites. Carbon 2014, 68, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, X.; Faraji, S.; Bradford, P.D.; Li, Q.; Zhu, Y. Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. Carbon 2014, 75, 307–313. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Xu, G.; Bradford, P.D.; Wang, X.; Zhao, H.; Zhang, Y.; Jia, Q.; Yuan, F.-G.; Li, Q.; et al. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. Carbon 2011, 49, 4786–4791. [Google Scholar] [CrossRef]
- Liu, X.; Yin, X.; Kong, L.; Li, Q.; Liu, Y.; Duan, W.; Zhang, L.; Cheng, L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon 2014, 68, 501–510. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Gu, Y.; Zhang, Y.; Wang, S.; Li, Q.; Zhang, Z. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 2014, 6, 4338–4344. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Guo, Q.; Yang, J.; Dong, X.; Li, D.; Liu, J.; Shi, J.; Lu, C.; Liu, L. Structure of silicon-modified mesophase pitch-based graphite fibers. Carbon 2015, 94, 335–341. [Google Scholar] [CrossRef]
- Shimanoe, H.; Mashio, T.; Nakabayashi, K.; Inoue, T.; Hamaguchi, M.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon 2020, 158, 922–929. [Google Scholar] [CrossRef]
- Mochidaa, I.; Koraia, Y.; Kua, C.H.; Watanabea, F.; Sakaib, Y. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon 2000, 38, 305–328. [Google Scholar] [CrossRef]
- Frank, E.; Hermanutz, F.; Buchmeiser, M.R. Carbon Fibers: Precursors, Manufacturing, and Properties. Macromol. Mater. Eng. 2012, 297, 493–501. [Google Scholar] [CrossRef]
- Zhang, S.; Hao, A.; Nguyen, N.; Oluwalowo, A.; Liu, Z.; Dessureault, Y.; Park, J.G.; Liang, R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon 2019, 144, 628–638. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Q.-H.; Yang, Y.; Lv, W.; Wen, Y.; Hou, P.-X.; Wang, M.; Cheng, H.-M. Self-Assembled Free-Standing Graphite Oxide Membrane. Adv. Mater. 2009, 21, 3007–3011. [Google Scholar] [CrossRef]
- Compton, O.C.; Dikin, D.A.; Putz, K.W.; Brinson, L.C.; Nguyen, S.B.T. Electrically Conductive ’Alkylated’ Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper. Adv. Mater. 2010, 22, 892–896. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Zhong, Y.; Yan, X.; Song, Y.; Guo, Q.; Shi, J.; Liu, L. Formation mechanism of carbon foams derived from mesophase pitch. Carbon 2011, 49, 618–624. [Google Scholar] [CrossRef]
- Ji, Y.; Li, T.; Lin, Q.; Fang, C.; Wang, X. Preparation of Mesophase Pitch from Coal Tar Pitch for C/C Composites. Key Eng. Mater. 2007, 334–335, 165–168. [Google Scholar] [CrossRef]
- Dumont, M.; Dourges, M.A.; Bourrat, X.; Pailler, R.; Naslain, R.; Babot, O.; Birot, M.; Pillot, J.P. Carbonization behaviour of modified synthetic mesophase pitches. Carbon 2005, 43, 2277–2284. [Google Scholar] [CrossRef]
- Kartick, B.; Srivastava, S.K.; Srivastava, I. Green synthesis of graphene. J. Nanosci. Nanotechnol. 2013, 13, 4320–4324. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A.R. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 2013, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.H.; Lee, S.L.; Chong, C.T. TEM and XRD Analysis of Carbon Nanotubes Synthesised from Flame. Key Eng. Mater. 2016, 723, 470–475. [Google Scholar] [CrossRef]
- Jiang, W.; Nadeau, G.; Zaghib, K.; Kinoshita, K. Thermal analysis of the oxidation of natural graphite-effect of particle size. Thermochim. Acta 2000, 351, 85–93. [Google Scholar] [CrossRef]
- Zhang, S.; Park, J.G.; Nguyen, N.; Jolowsky, C.; Hao, A.; Liang, R. Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon 2017, 125, 649–658. [Google Scholar] [CrossRef]
- Mcevoy, N.; Peltekis, N.; Kumar, S.; Rezvani, E.; Nolan, H.; Keeley, G.P.; Blau, W.J.; Duesberg, G.S. Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 2012, 50, 1216–1226. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.B.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Chen, F.; Zhao, T. Multi-scale alignment construction for strong and conductive carbon nanotube/carbon composites. Mater. Today Commun. 2016, 6, 56–68. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zhang, X.; Chikkannanavar, S.B.; Zhao, Y.; Dangelewicz, A.M.; Zheng, L.; Doom, S.K.; Jia, Q.; Peterson, D.E. Structure-Dependent Electrical Properties of Carbon Nanotube Fibers. Adv. Mater. 2010, 19, 3358–3363. [Google Scholar] [CrossRef]
- Vavro, J.; Llaguno, M.C.; Satishkumar, B.C.; Luzzi, D.E.; Fischer, J.E. Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl. Phys. Lett. 2002, 80, 1450–1452. [Google Scholar] [CrossRef] [Green Version]
Sample | 2θ (degree) | FWHM (degree) | d(002) a (nm) | LC(002) b (nm) |
---|---|---|---|---|
MP | 25.3 | 1.79 | 0.352 | 5.05 |
MPC@1000 | 25.5 | 4.25 | 0.349 | 2.13 |
MPC@1300 | 25.6 | 3.14 | 0.348 | 2.88 |
Specimen | Mass (%) | |||
---|---|---|---|---|
Organic Component | Amorphous Carbon | Carbon Nanotube | Crystalline Carbon | |
CNT film | 6.45 | - | 86.62 | - |
CNTF/MPC@1000 | - | 51.21 | 33.64 | 15.13 |
CNTF/MPC@1300 | - | 33.08 | 35.53 | 29.24 |
MP | CNTF/MP | ||||
---|---|---|---|---|---|
Peak Position (°C) | Enthalpy Change (kJ/g) | Peak Position (°C) | Enthalpy Change (kJ/g) | ||
Amorphous carbon | 904 | 25.8 | 815 | 30.5 | |
Crystalline carbon | LT a | 1014 | 5.4 | 938 | 14.9 |
HT b | 1327 | 0.6 | 1283 | 2.7 |
Sample | σ a (S/cm) | Increment (%) | α b (mm2/s) | λ c (W/m∙K) | Increment (%) |
---|---|---|---|---|---|
CNT film | 424 | - | 0.54 | 0.18 | - |
CNTF/MPC@1000 | 683 | 61 | 1.5 | 1.49 | 727 |
CNTF/MPC@1300 | 841 | 98 | 2.26 | 1.89 | 950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, Z.; Wang, S.; Gu, Y.; Zhang, W.; Jiang, C.; Li, M. The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite. Nanomaterials 2021, 11, 758. https://doi.org/10.3390/nano11030758
Che Z, Wang S, Gu Y, Zhang W, Jiang C, Li M. The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite. Nanomaterials. 2021; 11(3):758. https://doi.org/10.3390/nano11030758
Chicago/Turabian StyleChe, Zhe, Shaokai Wang, Yizhuo Gu, Wei Zhang, Cai Jiang, and Min Li. 2021. "The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite" Nanomaterials 11, no. 3: 758. https://doi.org/10.3390/nano11030758
APA StyleChe, Z., Wang, S., Gu, Y., Zhang, W., Jiang, C., & Li, M. (2021). The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite. Nanomaterials, 11(3), 758. https://doi.org/10.3390/nano11030758