Phytofabrication of Silver Nanoparticles (AgNPs) with Pharmaceutical Capabilities Using Otostegia persica (Burm.) Boiss. Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phytofabrication of AgNPs
2.3. Characterization of the AgNPs
2.4. Phytochemical Screening
2.4.1. Total Phenolics Content (TPC) Determination
2.4.2. Total Flavonoid Content (TFC) Measurement
2.5. Antioxidant Potential
2.5.1. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity Assay
2.5.2. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Scavenging Activity Assay
2.6. Antibacterial Assays
2.6.1. Disc Diffusion Method
2.6.2. Measurement of the Minimum Inhibitory Concentration (MIC)
2.6.3. Measurement of the Minimum Bactericidal Concentration (MBC)
2.7. Antifungal Potential
Antifungal Susceptibility Test
2.8. Anti-Inflammatory Assay
Human Red Blood Cell Stabilization Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. Visual Confirmation of the Phytofabrication of AgNPs
3.2. The Phytofabricated AgNPs Characterization
3.2.1. UV-Vis Spectroscopy
3.2.2. FTIR Spectroscopy
3.2.3. X-ray Diffraction (XRD)
3.2.4. Transmission Electron Microscopy (TEM)
3.2.5. Zeta Potential
3.3. Phytochemical Analysis
Total Phenolic and Flavonoid Contents
3.4. Antioxidant Activity
3.4.1. DPPH Radical Scavenging Activity
3.4.2. ABTS Radical Scavenging Activity
3.5. Antibacterial Activity
3.5.1. Disc Diffusion Method
3.5.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.6. Antifungal Activity
3.7. Anti-Inflammatory Activity
Human Red Blood Cell Stabilization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arunachalam, K.D.; Annamalai, S.K.; Hari, S. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int. J. Nanomed. 2013, 8, 1307. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Pohl, P.; Epifano, F.; Álvarez-Suarez, J.M. Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 2020, 10, 2383. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Pohl, P. Synthesis of biogenic silver nanoparticles (Agcl-NPs) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials 2020, 10, 638. [Google Scholar] [CrossRef] [Green Version]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Gowramma, B.; Keerthi, U.; Rafi, M.; Rao, D.M. Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 2015, 5, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ghoshal, G.; Jain, A.; Goyal, M. Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: Exploring its antimicrobial and catalytic activities. J. Nanomed. Nanotechnol. 2017, 8, 1–8. [Google Scholar]
- Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Baek, K.-H. Green synthesis of silver chloride nanoparticles using Prunus persica L. outer peel extract and investigation of antibacterial, anticandidal, antioxidant potential. Green Chem. Lett. Rev. 2016, 9, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Okaiyeto, K.; Ojemaye, M.O.; Hoppe, H.; Mabinya, L.V.; Okoh, A.I. Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of Oedera genistifolia: Characterization and antibacterial potential. Molecules 2019, 24, 4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassa, N.; Sharififar, F.; Shafiee, A. Otostegia persica as a source of natural antioxidants. Pharm. Biol. 2005, 43, 33–38. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Kuhestani, K.; Abdollahi, V.; Mahmood, A. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. J. Ethnopharmacol. 2014, 153, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Nourallahi, H.; Havaie, S.; Issa, L. Antimicrobial activity of Otostegia persica Boiss. extracts. Res. Pharm. Sci. 2007, 1, 53–58. [Google Scholar]
- Tofighi, Z.; Alipour, F.; Goodarzi, S.; Yassa, N.; Hadjiakhoondi, A.; Hadavinia, H. Phytochemical and antidiabetic investigations of Otostegia persica from Iran. Planta Med. 2009, 75, PH26. [Google Scholar] [CrossRef]
- Ganjali, A.; Sotoudeh, A.; Jahanshahi, A.; Takhtfooladi, M.A.; Bazzazan, A.; Roodbari, N.; Harati, M.P. Otostegia persica extraction on healing process of burn wounds. Acta Cir. Bras. 2013, 28, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haj, H.V.; Rabani, M.; Asghari, G.R.; Karami, S.Z. Effects of Otostegia persica (Burm.) Boiss on morphine withdrawal syndrome in mice, Iran. J. Pharm. Res. 2004, 3, 171–175. [Google Scholar]
- Ayatollahi, S.; Kobarfard, F.; Asgarpanah, J.; Ahmed, Z. Chemical constituents from Otostegia persica. J. Chem. Soc. Pak. 2007, 29, 61–63. [Google Scholar]
- Manik, U.; Nande, A.; Raut, S.; Dhoble, S. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Res. Mater. 2020, 6, 100086. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Epifano, F.; Fiorito, S.; Álvarez-Suarez, J.M. Phytochemical analysis and biological investigation of Nepeta juncea Benth. different extracts. Plants 2020, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Da Silva, J.A.T. Antibacterial, antioxidant, antifungal and anti-inflammatory activities of crude extract from Nitraria schoberi fruits. 3 Biotech 2015, 5, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Min-Jung, K.; Hwa-Hyun, N.; Myong-Soo, C. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 10890. [Google Scholar]
- Sharifi-Rad, M.; Iriti, M.; Gibbons, S.; Sharifi-Rad, J. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. Cell. Mol. Biol. 2016, 62, 39–45. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M7-A6; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2012. [Google Scholar]
- Quan, H.; Cao, Y.-Y.; Xu, Z.; Zhao, J.-X.; Gao, P.-H.; Qin, X.-F.; Jiang, Y.-Y. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob. Agents Chemother. 2006, 50, 1096–1099. [Google Scholar] [CrossRef] [Green Version]
- Vane, J.; Botting, R. New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res. 1995, 44, 1–10. [Google Scholar] [CrossRef]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Megiel, E. Surface modification using TEMPO and its derivatives. Adv. Colloid Interface Sci. 2017, 250, 158–184. [Google Scholar] [CrossRef] [PubMed]
- Femi-Adepoju, A.G.; Dada, A.O.; Otun, K.O.; Adepoju, A.O.; Fatoba, O.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): Characterization and antimicrobial studies. Heliyon 2019, 5, e01543. [Google Scholar] [CrossRef] [Green Version]
- Dada, A.O.; Adekola, F.A.; Odebunmi, E.O. Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent manganese (nZVMn): Equilibrium, kinetic and thermodynamic studies. Environ. Nanotechnol. Monit. Manag. 2017, 8, 63–72. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Fiol, N.; Olivella, M.À.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crops Prod. 2013, 50, 494–500. [Google Scholar] [CrossRef]
- Adil, M.; Khan, T.; Aasim, M.; Khan, A.A.; Ashraf, M. Evaluation of the antibacterial potential of silver nanoparticles synthesized through the interaction of antibiotic and aqueous callus extract of Fagonia indica. AMB Express 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Shahid, S.; Lee, C.-S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules 2020, 10, 835. [Google Scholar] [CrossRef]
- Yu, C.; Tang, J.; Liu, X.; Ren, X.; Zhen, M.; Wang, L. Green biosynthesis of silver nanoparticles using Eriobotrya japonica (Thunb.) leaf extract for reductive catalysis. Materials 2019, 12, 189. [Google Scholar]
- Kavaz, D.; Umar, H.; Shehu, S. Synthesis, characterization, antimicrobial and antimetastatic activity of silver nanoparticles synthesized from Ficus ingens leaf. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1193–S1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Wang, L.; Su, H.; Gu, L.; Han, T.; Meng, F.; Liu, C. Making good use of food wastes: Green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys. 2015, 10, 12–18. [Google Scholar] [CrossRef]
- Muthukumar, H.; Palanirajan, S.K.; Shanmugam, M.K.; Gummadi, S.N. Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnol. Rep. 2020, 26, e00469. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 2010, 80, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Bhattacharyya, A.; Ali, S.W. Characterization techniques for nanotechnology applications in textiles. Indian J. Fiber Text. Res. 2008, 33, 304–317. [Google Scholar]
- Ashour, A.A.; Raafat, D.; El-Gowelli, H.M.; El-Kamel, A.H. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: Characterization and antimicrobial properties. Int. J. Nanomed. 2015, 10, 7207. [Google Scholar]
- Dhas, S.P.; Mukerjhee, A.; Chandrasekaran, N. Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int. J. Pharm. Pharm. Sci. 2013, 5, 349–352. [Google Scholar]
- Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014, 6, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Biswas, K.; Tamang, A.; Bandyopadhyay, J.; De, D.; Mohanta, D.; Bastia, A.K. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016, 10, 438–444. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Alam, A.K. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seralathan, J.; Stevenson, P.; Subramaniam, S.; Raghavan, R.; Pemaiah, B.; Sivasubramanian, A.; Veerappan, A. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Cumbal, L.; Angulo, Y. Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. J. Mol. Liq. 2015, 211, 476–480. [Google Scholar] [CrossRef]
- Kvítek, L.; Panáček, A.; Soukupova, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834. [Google Scholar] [CrossRef]
- Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol. 2015, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamperini, C.; André, R.; Longo, V.; Mima, E.; Vergani, C.E.; Machado, A.L.; Varela, J.A.; Longo, E. Antifungal applications of Ag-decorated hydroxyapatite nanoparticles. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef]
- Babele, P.K.; Singh, A.K.; Srivastava, A. Bio-inspired silver nanoparticles impose metabolic and epigenetic toxicity to Saccharomyces cerevisiae. Front. Pharmacol. 2019, 10, 1016. [Google Scholar] [CrossRef]
- Sadique, J.; Al-Rqobahs, W.; Bughaith, E.; Gindi, A. The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 1989, 60, 525–532. [Google Scholar]
- Bag, A.; Kumar Bhattacharyya, S.; Kumar Pal, N.; Ranjan Chattopadhyay, R. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm. Biol. 2013, 51, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Giessler, A.J.; Bekemeier, H.; Hischelamann, R.; Bakatheir, H.A. Pharmacology, Biochemistry and Immunology of Inflammatory Reaction; Halle-Wittenberg, Martin Luther University: Halle (Saale), Germany, 1982. [Google Scholar]
- Shailesh, G.; Seema, K.; Dwivedi, S. In-Vitro anti-inflammatory activity of Sarcostemma acidum Wight. & Arn. Indian herb by Human red blood cell membrane stabilization method. Int. J. Pharm. Teach. Pract. 2011, 2, 184–188. [Google Scholar]
- Sankari, G.; Mounnissamy, V.; Balu, V. Evaluation of anti-inflammatory and membrane stabilizing properties of ethanolic extracts of Diptheracanthus prostatus (Acanthaceae). Amala Res. Bull. 2009, 29, 188–189. [Google Scholar]
Diameter of the Inhibition Zone (mm) | |||||||
---|---|---|---|---|---|---|---|
Concentration (µg/mL) | Staphylococcus aureus | Bacillus subtilis | Streptococcus pyogenes | Escherichia Coli | Pseudomonas aeruginosa | Salmonella typhi | |
Extract | 50 | 13 ± 0.5 Ka | 12 ± 0.4 Ib | 10 ± 0.4 Gc | 7 ± 0.2 Lf | 9 ± 0.2 Ld | 8 ± 0.1 Le |
100 | 15 ± 0.3 Ja | 13 ± 0.5 Hb | 12 ± 0.1 Fc | 9 ± 0.4 Kf | 11 ± 0.4 Kd | 10 ± 0.2 Ke | |
150 | 17 ± 0.1 Ha | 15 ± 0.3 Gb | 14 ± 0.2 Ec | 10 ± 0.4 Jf | 12 ± 0.3 Jd | 11 ± 0.3 Je | |
200 | 19 ± 0.2 Fa | 17 ± 0.2 Fb | 15 ± 0.6 Dc | 12 ± 0.5 If | 14 ± 0.5 Id | 13 ± 0.4 Ie | |
250 | 20 ± 0.3 Ea | 18 ± 0.2 Eb | 17 ± 0.2 Cc | 14 ± 0.2 Hf | 16 ± 0.2 Hd | 15 ± 0.2 He | |
300 | 22 ± 0.2 Ca | 19 ± 0.3 Db | 18 ± 0.3 Bc | 15 ± 0.3 Ge | 18 ± 0.3 Gc | 17 ± 0.5 Gd | |
AgNPs | 50 | 15 ± 0.3 Jd | 13 ± 0.2 He | 12 ± 0.3 Ff | 16 ± 0.2 Fc | 19 ± 0.3 Fa | 17 ± 0.6 Gb |
100 | 16 ± 0.1 Id | 15 ± 0.3 Ge | 14 ± 0.4 Ef | 17 ± 0.1 Ec | 21 ± 0.5 Ea | 19 ± 0.4 Eb | |
150 | 18 ± 0.4 Gd | 17 ± 0.5 Fe | 15 ± 0.6 Df | 19 ± 0.3 Dc | 22 ± 0.2 Da | 20 ± 0.2 Db | |
200 | 20 ± 0.2 Ec | 18 ± 0.4 Ed | 17 ± 0.2 Ce | 21 ± 0.4 Cb | 23 ± 0.1 Ca | 21 ± 0.3 Cb | |
250 | 21 ± 0.5 Dd | 20 ± 0.2 Ce | 18 ± 0.1 Bf | 23 ± 0.2 Bc | 26 ± 0.1 Ba | 24 ± 0.2 Bb | |
300 | 23 ± 0.4 Bd | 21 ± 0.2 Be | 20 ± 0.1 Af | 25 ± 0.6 Ac | 28 ± 0.3 Aa | 26 ± 0.1 Ab | |
Gentamicin (10 µg/disk) | 25 ± 0.2 Aa | 22 ± 0.1 Ab | 20 ± 0.5 Ac | 16 ± 0.2 Ff | 19 ± 0.4 Fd | 18 ± 0.2 Fe |
MIC (µg/mL) | MBC (µg/mL) | |||
---|---|---|---|---|
Bacteria strains | Extract | AgNPs | Extract | AgNPs |
Staphylococcus aureus | 75 | 37.5 | 150 | 75 |
Bacillus subtilis | 75 | 37.5 | 150 | 75 |
Streptococcus pyogenes | 75 | 37.5 | 150 | 75 |
Escherichia coli | 150 | 18.75 | 300 | 37.5 |
Pseudomonas aeruginosa | 150 | 9.4 | 300 | 18.75 |
Salmonella typhi | 150 | 9.4 | 300 | 18.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi-Rad, M.; Pohl, P.; Epifano, F. Phytofabrication of Silver Nanoparticles (AgNPs) with Pharmaceutical Capabilities Using Otostegia persica (Burm.) Boiss. Leaf Extract. Nanomaterials 2021, 11, 1045. https://doi.org/10.3390/nano11041045
Sharifi-Rad M, Pohl P, Epifano F. Phytofabrication of Silver Nanoparticles (AgNPs) with Pharmaceutical Capabilities Using Otostegia persica (Burm.) Boiss. Leaf Extract. Nanomaterials. 2021; 11(4):1045. https://doi.org/10.3390/nano11041045
Chicago/Turabian StyleSharifi-Rad, Majid, Pawel Pohl, and Francesco Epifano. 2021. "Phytofabrication of Silver Nanoparticles (AgNPs) with Pharmaceutical Capabilities Using Otostegia persica (Burm.) Boiss. Leaf Extract" Nanomaterials 11, no. 4: 1045. https://doi.org/10.3390/nano11041045
APA StyleSharifi-Rad, M., Pohl, P., & Epifano, F. (2021). Phytofabrication of Silver Nanoparticles (AgNPs) with Pharmaceutical Capabilities Using Otostegia persica (Burm.) Boiss. Leaf Extract. Nanomaterials, 11(4), 1045. https://doi.org/10.3390/nano11041045