Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections
Abstract
:1. Introduction
2. Bacterial Biofilms
2.1. Structure and Composition of Bacterial Biofilm
2.1.1. Exopolysaccharides
2.1.2. Proteins
2.1.3. Extracellular DNA
2.2. Formation of Bacterial Biofilm
3. Superhydrophobic Surfaces
4. Nanomaterials for Fabrication of Superhydrophobic Surfaces
4.1. Inorganic Nanomaterials
4.1.1. Carbon-Based
4.1.2. Silica-Based
4.1.3. Metal-Based
4.2. Polymer-Based Organic Nanomaterials
4.3. Inorganic–Organic Hybrid Nanomaterials
5. Anti-Biofilm Applications of Superhydrophobic Nanocoating
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morán, G.; Méallet-Renault, R. Superhydrophobic surfaces toward prevention of biofilm-associated infections. In Bacterial Pathogenesis and Antibacterial Control; InTech: London, UK, 2018. [Google Scholar]
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial Infections: Epidemiology, Prevention, Control and Surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Chen, M.; Yu, Q.; Sun, H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int. J. Mol. Sci. 2013, 14, 18488–18501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Li, X.; Yu, C.; Wang, Y. Promising Therapeutic Strategies against Microbial Biofilm Challenges. Front. Cell. Infect. Microbiol. 2020, 10, 359. [Google Scholar] [CrossRef]
- Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial Biofilm Eradication Agents: A Current Review. Front. Chem. 2019, 7, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Subhadra, B.; Kim, D.H.; Woo, K.; Surendran, S.; Choi, C.H. Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. Materials 2018, 11, 1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.G.S.; Bertolini, M.; Costa, R.C.; Cordeiro, J.M.; Nagay, B.E.; de Almeida, A.B.; Retamal-Valdes, B.; Nociti, F.H.; Feres, M.; Rangel, E.C.; et al. Targeting Pathogenic Biofilms: Newly Developed Superhydrophobic Coating Favors a Host-Compatible Microbial Profile on the Titanium Surface. ACS Appl. Mater. Interfaces 2020, 12, 10118–10129. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Park, S.S.; Ha, C.S. Recent Advances in Superhydrophobic Nanomaterials and Nanoscale Systems. J. Nanosci. Nanotechnol. 2014, 14, 1441–1462. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S. Biofilm formation on medical devices and infection: Preventive approaches. In Biofilm and Materials Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 93–108. ISBN 9783319145655. [Google Scholar]
- Wi, Y.M.; Patel, R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect. Dis. Clin. N. Am. 2018, 32, 915–929. [Google Scholar] [CrossRef]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era. Cold Spring Harb. Perspect. Med. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, N.K.; Sani, R.K.; Gupta, P.; Pruthi, P.A.; Pruthi, V. Role of exopolysaccharides in biofilm formation. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; Volume 1323, pp. 17–57. [Google Scholar]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J. Microbiol. 2019, 59, 3–12. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Palanisamy, N.K.; Wong, E.H. Alternative approaches to combat medicinally important biofilm-forming pathogens. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; IntechOpen: London, UK, 2019. [Google Scholar]
- Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M.A. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial Biofilm and Associated Infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving Structure to the Biofilm Matrix: An Overview of Individual Strategies and Emerging Common Themes. FEMS Microbiol. Rev. 2015, 39, 649–669. [Google Scholar] [CrossRef] [Green Version]
- Nazir, R.; Zaffar, M.R.; Amin, I. Bacterial biofilms: The remarkable heterogeneous biological communities and nitrogen fixing microorganisms in lakes. In Freshwater Microbiology: Perspectives of Bacterial Dynamics in Lake Ecosystems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–340. ISBN 9780128174951. [Google Scholar]
- Chew, S.C.; Yang, L. Biofilms. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 407–415. ISBN 9780123849533. [Google Scholar]
- Nwodo, U.U.; Green, E.; Okoh, A.I. Bacterial Exopolysaccharides: Functionality and Prospects. Int. J. Mol. Sci. 2012, 13, 14002–14015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradali, M.F.; Rehm, B.H.A. The role of alginate in bacterial biofilm formation. In Extracellular Sugar-Based Biopolymers Matrices; Springer: Cham, Switzerland, 2019; pp. 517–537. [Google Scholar]
- Lembre, P.; Lorentz, C.; Di, P. Exopolysaccharides of the biofilm matrix: A complex biophysical world. In The Complex World of Polysaccharides; InTech: London, UK, 2012. [Google Scholar]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 1–22. [Google Scholar] [CrossRef]
- Serra, D.O.; Hengge, R. Cellulose in bacterial biofilms. In Extracellular Sugar-Based Biopolymers Matrices; Springer: Cham, Switzerland, 2019; pp. 355–392. [Google Scholar]
- Ziemba, C.; Shabtai, Y.; Piatkovsky, M.; Herzberg, M. Cellulose Effects on Morphology and Elasticity of Vibrio Fischeri Biofilms. NPJ Biofilms Microbiomes 2016, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Hiltunen, A.K.; Savijoki, K.; Nyman, T.A.; Miettinen, I.; Ihalainen, P.; Peltonen, J.; Fallarero, A. Structural and Functional Dynamics of Staphylococcus Aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms 2019, 7, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, D.; Cywes-Bentley, C.; Zhang, Y.F.; Pons, S.; Konkol, M.; Kearns, D.B.; Little, D.J.; Howell, P.L.; Skurnik, D.; Pier, G.B. Identification of Poly-N-Acetylglucosamine as a Major Polysaccharide Component of the Bacillus Subtilis Biofilm Matrix. J. Biol. Chem. 2015, 290, 19261–19272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.H.; Shu, J.C.; Lin, L.P.; Chong, K.Y.; Cheng, Y.W.; Du, J.F.; Liu, S.-T. Elucidating the Crucial Role of Poly N-Acetylglucosamine from Staphylococcus Aureus in Cellular Adhesion and Pathogenesis. PLoS ONE 2015, 10, e0124216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, H.; Rudkin, J.K.; Black, N.S.; Gallagher, L.; O’Neill, E.; O’Gara, J.P. Methicillin Resistance and the Biofilm Phenotype in Staphylococcus Aureus. Front. Cell. Infect. Microbiol. 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Valliammai, A.; Sethupathy, S.; Priya, A.; Selvaraj, A.; Bhaskar, J.P.; Krishnan, V.; Pandian, S.K. 5-Dodecanolide Interferes with Biofilm Formation and Reduces the Virulence of Methicillin-Resistant Staphylococcus Aureus (MRSA) through up Regulation of Agr System. Sci. Rep. 2019, 9, 13744. [Google Scholar] [CrossRef]
- Breslawec, A.P.; Wang, S.; Li, C.; Poulin, M.B. The Role of Anionic Amino Acids in Hydrolysis of Poly-β-(1,6)-N-Acetylglucosamine Exopolysaccharides by the Biofilm Dispersing Glycosidase Dispersin B. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fong, J.N.C.; Yildiz, F.H. Biofilm Matrix Proteins. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, J.J.; Qian, H.; Tan, L.; Zhang, Z.; Liu, H.; Pan, Y.; Zhao, Y. Insights Into the Role of Extracellular DNA and Extracellular Proteins in Biofilm Formation of Vibrio Parahaemolyticus. Front. Microbiol. 2020, 11, 813. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, J.; Ding, W.; Lin, J.; Tian, R.; Lu, L.; Liu, X.; Shen, X.; Qian, P.-Y. Extracellular Matrix-Associated Proteins Form an Integral and Dynamic System during Pseudomonas Aeruginosa Biofilm Development. Front. Cell. Infect. Microbiol. 2015, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Baum, M.M.; Kerwin, J.; Guerrero, D.; Webster, S.; Schaudinn, C.; VanderVelde, D.; Webster, P. Biofilm-Specific Extracellular Matrix Proteins of Nontypeable Haemophilus Influenzae. Pathog. Dis. 2014, 72, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Valle, J.; Latasa, C.; Gil, C.; Toledo-Arana, A.; Solano, C.; Penadés, J.R.; Lasa, I. Bap, a Biofilm Matrix Protein of Staphylococcus Aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor. PLoS Pathog. 2012, 8, e1002843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, A.C.; Leonard, A.; Schäuble, M.; Rieckmann, L.M.; Hoyer, J.; Maass, S.; Lalk, M.; Becher, D.; Pané-Farré, J.; Riedel, K. Virulence Factors Produced by Staphylococcus Aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol. Cell. Proteom. 2019, 18, 1036–1053. [Google Scholar] [CrossRef] [PubMed]
- Okshevsky, M.; Meyer, R.L. The Role of Extracellular DNA in the Establishment, Maintenance and Perpetuation of Bacterial Biofilms. Crit. Rev. Microbiol. 2015, 41, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez de Aldecoa, A.L.; Zafra, O.; González-Pastor, J.E. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front. Microbiol. 2017, 8, 1390. [Google Scholar] [CrossRef] [Green Version]
- Jakubovics, N.S.; Shields, R.C.; Rajarajan, N.; Burgess, J.G. Life after Death: The Critical Role of Extracellular DNA in Microbial Biofilms. Lett. Appl. Microbiol. 2013, 57, 467–475. [Google Scholar] [CrossRef]
- Das, T.; Sehar, S.; Manefield, M. The Roles of Extracellular DNA in the Structural Integrity of Extracellular Polymeric Substance and Bacterial Biofilm Development. Environ. Microbiol. Rep. 2013, 5, 778–786. [Google Scholar] [CrossRef]
- Vorkapic, D.; Pressler, K.; Schild, S. Multifaceted Roles of Extracellular DNA in Bacterial Physiology. Curr. Genet. 2016, 62, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Huang, Y.; Wu, S.; Li, Y.; Ye, Y.; Zheng, Y.; Huang, R. Extracellular DNA Inhibits Salmonella Enterica Serovar Typhimurium and S. Enterica Serovar Typhi Biofilm Development on Abiotic Surfaces. Curr. Microbiol. 2014, 68, 262–268. [Google Scholar] [CrossRef]
- Banerjee, D.; Shivapriya, P.M.; Gautam, P.K.; Misra, K.; Sahoo, A.K.; Samanta, S.K. A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 243–259. [Google Scholar] [CrossRef]
- Li, Y.H.; Tian, X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors 2012, 12, 2519–2538. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K.; Song, D. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Vadakkan, K.; Choudhury, A.A.; Gunasekaran, R.; Hemapriya, J.; Vijayanand, S. Quorum Sensing Intervened Bacterial Signaling: Pursuit of Its Cognizance and Repression. J. Genet. Eng. Biotechnol. 2018, 16, 239–252. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef]
- Carniello, V.; Peterson, B.W.; van der Mei, H.C.; Busscher, H.J. Physico-Chemistry from Initial Bacterial Adhesion to Surface-Programmed Biofilm Growth. Adv. Colloid Interface Sci. 2018, 261, 1–14. [Google Scholar] [CrossRef]
- Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P.K. Bacterial Adherence and Biofilm Formation on Medical Implants: A Review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1083–1099. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Hou, S.; Yongyat, C.; de Tore, S.; Ren, D. Patterned Biofilm Formation Reveals a Mechanism for Structural Heterogeneity in Bacterial Biofilms. Langmuir 2013, 29, 11145–11153. [Google Scholar] [CrossRef] [PubMed]
- Mangwani, N.; Dash, H.R.; Chauhan, A.; Das, S. Bacterial Quorum Sensing: Functional Features and Potential Applications in Biotechnology. J. Mol. Microbiol. Biotechnol. 2012, 22, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Marks, L.R.; Pettigrew, M.M.; Hakansson, A.P. Streptococcus Pneumoniae Biofilm Formation and Dispersion during Colonization and Disease. Front. Cell. Infect. Microbiol. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppenheimer-Shaanan, Y.; Steinberg, N.; Kolodkin-Gal, I. Small Molecules Are Natural Triggers for the Disassembly of Biofilms. Trends Microbiol. 2013, 21, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Avramescu, R.E.; Ghica, M.V.; Dinu-Pîrvu, C.; Prisada, R.; Popa, L. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach. Materials 2018, 11, 866. [Google Scholar] [CrossRef] [Green Version]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef] [Green Version]
- Roach, P.; Shirtcliffe, N.J.; Newton, M.I. Progess in Superhydrophobic Surface Development. Soft Matter 2008, 4, 224. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, K.; Bhattacharya, S. Superhydrophobic Surfaces Review: Functional Application, Fabrication Techniques and Limitations. J. Micromanuf. 2019, 2, 59–78. [Google Scholar] [CrossRef]
- Bhushan, B.; Nosonovsky, M. The Rose Petal Effect and the Modes of Superhydrophobicity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4713–4728. [Google Scholar] [CrossRef]
- Chang, F.M.; Hong, S.J.; Sheng, Y.J.; Tsao, H.K. High Contact Angle Hysteresis of Superhydrophobic Surfaces: Hydrophobic Defects. Appl. Phys. Lett. 2009, 95, 064102. [Google Scholar] [CrossRef]
- Chieng, B.W.; Ibrahim, N.A.; Daud, N.A.; Talib, Z.A. Functionalization of graphene oxide via gamma-ray irradiation for hydrophobic materials. In Synthesis, Technology and Applications of Carbon Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–203. ISBN 9780128157572. [Google Scholar]
- Darband, G.B.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem. 2020, 13, 1763–1802. [Google Scholar] [CrossRef]
- Khodaei, M. Introductory chapter: Superhydrophobic surfaces—Introduction and applications. In Superhydrophobic Surfaces—Fabrications to Practical Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Kota, A.K.; Kwon, G.; Tuteja, A. The Design and Applications of Superomniphobic Surfaces. NPG Asia Mater. 2014, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic Materials for Biomedical Applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir 2002, 18, 5818–5822. [Google Scholar] [CrossRef]
- Lafuma, A.; Quéré, D. Superhydrophobic States. Nat. Mater. 2003, 2, 457–460. [Google Scholar] [CrossRef]
- Bormashenko, E.Y. 7. Wetting transitions on rough surfaces. In Wetting of Real Surfaces; De Gruyter: Berlin, Germany, 2018; pp. 125–146. [Google Scholar]
- Otten, A.; Herminghaus, S. How Plants Keep Dry: A Physicist’s Point of View. Langmuir 2004, 20, 2405–2408. [Google Scholar] [CrossRef]
- Koch, K.; Barthlott, W. Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1487–1509. [Google Scholar] [CrossRef] [PubMed]
- Wolfs, M.; Darmanin, T.; Guittard, F. Superhydrophobic Fibrous Polymers. Polym. Rev. 2013, 53, 460–505. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, L. Water-Repellent Legs of Water Striders. Nature 2004, 432, 36. [Google Scholar] [CrossRef] [PubMed]
- Samaha, M.A.; Tafreshi, H.V.; Gad-el-Hak, M. Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine. C. R. Mec. 2012, 340, 18–34. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, F. Biomimetic superhydrophobic nanocoatings: From materials to fabrications and to applications. In Surfaces and Interfaces of Biomimetic Superhydrophobic Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 117–160. [Google Scholar]
- Tan, Y.Y.; Yap, P.K.; Xin Lim, G.L.; Mehta, M.; Chan, Y.; Ng, S.W.; Kapoor, D.N.; Negi, P.; Anand, K.; Singh, S.K.; et al. Perspectives and Advancements in the Design of Nanomaterials for Targeted Cancer Theranostics. Chem. Biol. Interact. 2020, 329, 109221. [Google Scholar] [CrossRef] [PubMed]
- McNamara, K.; Tofail, S.A.M. Nanoparticles in Biomedical Applications. Adv. Phys. X 2017, 2, 54–88. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Ind. Eng. Chem. Res. 2018, 57, 2727–2745. [Google Scholar] [CrossRef]
- Seth, M.; Jana, S. Nanomaterials Based Superhydrophobic and Antimi-Crobial Coatings. Nanoworld J. 2020, 6, 26–28. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jishnu, A.; Jayan, J.S.; Saritha, A.; Sethulekshmi, A.S.; Venu, G. Superhydrophobic Graphene-Based Materials with Self-Cleaning and Anticorrosion Performance: An Appraisal of Neoteric Advancement and Future Perspectives. Colloids Surf. A Phys. Eng. Asp. 2020, 606, 125395. [Google Scholar]
- Abbas, R.; Elkhoshkhany, N.; Hefnawy, A.; Ebrahim, S.; Rahal, A. High Stability Performance of Superhydrophobic Modified Fluorinated Graphene Films on Copper Alloy Substrates. Adv. Mater. Sci. Eng. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, D. Super-Hydrophobic Film Prepared with Reduced Graphene Sheets and Its Application as Corrosion Barrier to Copper. Appl. Mech. Mater. 2013, 365–366, 1100–1105. [Google Scholar] [CrossRef]
- Wang, J.N.; Zhang, Y.L.; Liu, Y.; Zheng, W.; Lee, L.P.; Sun, H.B. Recent Developments in Superhydrophobic Graphene and Graphene-Related Materials: From Preparation to Potential Applications. Nanoscale 2015, 7, 7101–7114. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zhang, B. Fabrication of Superhydrophobic Reduced-Graphene Oxide/Nickel Coating with Mechanical Durability, Self-Cleaning and Anticorrosion Performance. Nano Mater. Sci. 2020, 2, 151–158. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef] [Green Version]
- Eseev, M.; Goshev, A.; Kapustin, S.; Tsykareva, Y. Creation of Superhydrophobic Coatings Based on MWCNTs Xerogel. Nanomaterials 2019, 9, 1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nicola, F.; Castrucci, P.; Scarselli, M.; Nanni, F.; Cacciotti, I.; de Crescenzi, M. Super-Hydrophobic Multi-Walled Carbon Nanotube Coatings for Stainless Steel. Nanotechnology 2015, 26, 145701. [Google Scholar] [CrossRef]
- Belsanti, L.; Ogihara, H.; Mahanty, S.; Luciano, G. Electrochemical Behaviour of Superhydrophobic Coating Fabricated by Spraying a Carbon Nanotube Suspension. Bull. Mater. Sci. 2015, 38, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhang, Z.; Ge, B.; Men, X.; Zhou, X. Fabrication of a Superhydrophobic Carbon Nanotube Coating with Good Reusability and Easy Repairability. Colloids Surf. A Phys. Eng. Asp. 2014, 444, 252–256. [Google Scholar] [CrossRef]
- Sriramulu, D.; Reed, E.L.; Annamalai, M.; Venkatesan, T.V.; Valiyaveettil, S. Synthesis and Characterization of Superhydrophobic, Self-Cleaning NIR-Reflective Silica Nanoparticles. Sci. Rep. 2016, 6, 35993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Yang, W.; Sun, F.; Zhang, P.; He, Y.; Wang, X.; Luo, D.; Ma, W.; Sergio, G.C. Construction of a Superhydrophobic Coating Using Triethoxyvinylsilane-Modified Silica Nanoparticles. Surf. Eng. 2019, 35, 418–425. [Google Scholar] [CrossRef]
- Awais, M.; Jalil, M.; Zulfiqar, U.; Husain, S.W. A Facile Approach towards Fabrication of Super Hydrophobic Surface from Functionalized Silica Particles. IOP Conf. Ser. Mater. Sci. Eng. 2016, 146, 012022. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh, M.J.; Afghihi, S.; Saidi, H. Superhydrophobic Surface Based Silica Nanoparticle Modified with Diisocyanate and Short and Long Normal Chain Alcohols. Asian J. Nanosci. Mater. 2018, 1, 74–80. [Google Scholar]
- Zhang, Y.; Dong, B.; Wang, S.; Zhao, L.; Wan, L.; Wang, E. Mechanically Robust, Thermally Stable, Highly Transparent Superhydrophobic Coating with Low-Temperature Sol-Gel Process. RSC Adv. 2017, 7, 47357–47365. [Google Scholar] [CrossRef] [Green Version]
- Sau, T.K.; Biswas, A.; Ray, P. Metal nanoparticles in nanomedicine: Advantages and scope. In Metal Nanoparticles; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 121–168. [Google Scholar]
- Liang, J.; Li, D.; Wang, D.; Liu, K.; Chen, L. Preparation of Stable Superhydrophobic Film on Stainless Steel Substrate by a Combined Approach Using Electrodeposition and Fluorinated Modification. Appl. Surf. Sci. 2014, 293, 265–270. [Google Scholar] [CrossRef]
- She, Z.; Li, Q.; Wang, Z.; Tan, C.; Zhou, J.; Li, L. Highly Anticorrosion, Self-Cleaning Superhydrophobic Ni-Co Surface Fabricated on AZ91D Magnesium Alloy. Surf. Coat. Technol. 2014, 251, 7–14. [Google Scholar] [CrossRef]
- Macias-Montero, M.; Borras, A.; Romero-Gomez, P.; Cotrino, J.; Frutos, F.; Gonzalez-Elipe, A.R. Plasma Deposition of Superhydrophobic Ag@TiO2 Core@shell Nanorods on Processable Substrates. Plasma Process. Polym. 2014, 11, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Shaban, M.; Mohamed, F.; Abdallah, S. Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst. Sci. Rep. 2018, 8, 3925. [Google Scholar] [CrossRef]
- Hu, J.; Fang, Z.; Huang, Y.; Lu, J. Fabrication of Superhydrophobic Surfaces Based on Fluorosilane and TiO2/SiO2 Nanocomposites. Surf. Eng. 2020. [Google Scholar] [CrossRef]
- Li, C.; Xie, C.; Ou, J.; Xue, M.; Wang, F.; Lei, S.; Fang, X.; Zhou, H.; Li, W. ZnO Superhydrophobic Coating via Convenient Spraying and Its Biofouling Resistance. Surf. Interface Anal. 2018, 50, 1278–1285. [Google Scholar] [CrossRef]
- Kausar, A. Nanomaterials for design and fabrication of superhydrophobic polymer coating. In Superhydrophobic Polymer Coatings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–90. [Google Scholar]
- Cheng, Y.; Wu, B.; Ma, X.; Lu, S.; Xu, W.; Szunerits, S.; Boukherroub, R. Facile Preparation of High Density Polyethylene Superhydrophobic/Superoleophilic Coatings on Glass, Copper and Polyurethane Sponge for Self-Cleaning, Corrosion Resistance and Efficient Oil/Water Separation. J. Colloid Interface Sci. 2018, 525, 76–85. [Google Scholar] [CrossRef]
- Yuan, Z.; Bin, J.; Wang, X.; Liu, Q.; Zhao, D.; Chen, H.; Jiang, H. Preparation and Anti-Icing Property of a Lotus-Leaf-like Superhydrophobic Low-Density Polyethylene Coating with Low Sliding Angle. Polym. Eng. Sci. 2012, 52, 2310–2315. [Google Scholar] [CrossRef]
- Huovinen, E.; Takkunen, L.; Korpela, T.; Suvanto, M.; Pakkanen, T.T.; Pakkanen, T.A. Mechanically Robust Superhydrophobic Polymer Surfaces Based on Protective Micropillars. Langmuir 2014, 30, 1435–1443. [Google Scholar] [CrossRef]
- Guo, Y.B.; Yang, L.; Wang, D.G. Preparation and Hydrophobic Behaviours of Polystyrene Composite Coating. Surf. Eng. 2016, 32, 95–101. [Google Scholar] [CrossRef]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Des. Dev. 2018, 12, 3117–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Sha, J.; Wang, W.; Qin, C.; Li, W.; Qin, C. Superhydrophobic Surfaces Generated by One-Pot Spray-Coating of Chitosan-Based Nanoparticles. Carbohydr. Polym. 2018, 195, 39–44. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Philipchenko, A.B. Superhydrophobic Chitosan-Based Coatings for Textile Processing. Appl. Surf. Sci. 2012, 263, 783–787. [Google Scholar] [CrossRef]
- Gong, X.; He, S. Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Figuerez, M.; López-Córdoba, A.; Torres-Giner, S.; Lagaron, J. Superhydrophobic Bio-Coating Made by Co-Continuous Electrospinning and Electrospraying on Polyethylene Terephthalate Films Proposed as Easy Emptying Transparent Food Packaging. Coatings 2018, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shan, L.; Shen, H.; Qiu, J. Manufacturing of Robust Superhydrophobic Wood Surfaces Based on PEG–Functionalized SiO2/PVA/PAA/Fluoropolymer Hybrid Transparent Coating. Prog. Org. Coat. 2021, 154, 106186. [Google Scholar] [CrossRef]
- Qing, Y.; Zheng, Y.; Hu, C.; Wang, Y.; He, Y.; Gong, Y.; Mo, Q. Facile Approach in Fabricating Superhydrophobic ZnO/Polystyrene Nanocomposite Coating. Appl. Surf. Sci. 2013, 285, 583–587. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Prasad, G.; Bera, P.; Anandan, C. Stable Superhydrophobic Coatings Using PVDF-MWCNT Nanocomposite. Appl. Surf. Sci. 2014, 301, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tilburg Bernardes, E.; Lewenza, S.; Reckseidler-Zenteno, S. Current Research Approaches to Target Biofilm Infections. Postdoc J. 2015, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Shahid, A.; Rasool, M.; Akhter, N.; Aslam, B.; Hassan, A.; Sana, S.; Rasool, M.H.; Khurshid, M. Innovative strategies for the control of biofilm formation in clinical settings. In Bacterial Biofilms; IntechOpen: London, UK, 2020. [Google Scholar]
- Encinas, N.; Yang, C.Y.; Geyer, F.; Kaltbeitzel, A.; Baumli, P.; Reinholz, J.; Mailänder, V.; Butt, H.J.; Vollmer, D. Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. ACS Appl. Mater. Interfaces 2020, 12, 21192–21200. [Google Scholar] [CrossRef]
- Wu, S.; Altenried, S.; Zogg, A.; Zuber, F.; Maniura-Weber, K.; Ren, Q. Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation. ACS Omega 2018, 3, 6456–6464. [Google Scholar] [CrossRef]
- Crick, C.R.; Ismail, S.; Pratten, J.; Parkin, I.P. An Investigation into Bacterial Attachment to an Elastomeric Superhydrophobic Surface Prepared via Aerosol Assisted Deposition. Thin Solid Films 2011, 519, 3722–3727. [Google Scholar] [CrossRef]
- Pereni, C.I.; Zhao, Q.; Liu, Y.; Abel, E. Surface Free Energy Effect on Bacterial Retention. Colloids Surf. B Biointerfaces 2006, 48, 143–147. [Google Scholar] [CrossRef]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-Mimicking Nano and Micro-Structured Surface Fabrication for Antibacterial Properties in Medical Implants. J. Nanobiotechnol. 2017, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial Effects of Nanopillar Surfaces Are Mediated by Cell Impedance, Penetration and Induction of Oxidative Stress. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Eduok, U.; Szpunar, J.; Ebenso, E. Superhydrophobic antibacterial polymer coatings. In Superhydrophobic Polymer Coatings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 245–279. [Google Scholar]
- Liu, Y.; Cao, H.; Chen, S.; Wang, D. Ag Nanoparticle-Loaded Hierarchical Superamphiphobic Surface on an Al Substrate with Enhanced Anticorrosion and Antibacterial Properties. J. Phys. Chem. C 2015, 119, 25449–25456. [Google Scholar] [CrossRef]
- Spasova, M.; Manolova, N.; Markova, N.; Rashkov, I. Superhydrophobic PVDF and PVDF-HFP Nanofibrous Mats with Antibacterial and Anti-Biofouling Properties. Appl. Surf. Sci. 2016, 363, 363–371. [Google Scholar] [CrossRef]
- Heinonen, S.; Nikkanen, J.P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E. Bacterial Growth on a Superhydrophobic Surface Containing Silver Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2013, 47, 012064. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Tang, P.; Zhang, W.; Wang, Y.; Zhang, B.; Wang, H.; Zhang, L. Effect of Superhydrophobic Surface of Titanium on Staphylococcus Aureus Adhesion. J. Nanomater. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Lin, J.; Zhang, Y.; Lin, Z.; Qiao, Z.; Liu, Z.; Yang, W.; Liu, X.; Dong, M.; Guo, Z. A New Anti-Biofilm Strategy of Enabling Arbitrary Surfaces of Materials and Devices with Robust Bacterial Anti-Adhesion: Via a Spraying Modified Microsphere Method. J. Mater. Chem. A 2019, 7, 26039–26052. [Google Scholar] [CrossRef]
- Rungraeng, N.; Yoon, S.H.; Li, Y.; Jun, S. Development of a Self-Slippery Liquid-Infused Porous Surface (SLIPS) Coating Using Carbon Nanotube Composite for Repelling Food Debris and Microbial Biofilms. Trans. Asabe 2015, 58, 861–867. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, J.; Hao, L.; Yegin, Y.; Bae, M.; Ulugun, B.; Taylor, T.M.; Scholar, E.A.; Cisneros-Zevallos, L.; Oh, J.K.; et al. Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS Appl. Mater. Interfaces 2020, 12, 21311–21321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Cao, D.; Liu, X.; Zheng, Y.; Shi, Z.; Zhu, S.; Cui, Z. Superhydrophobic Coatings with Self-Cleaning and Antibacterial Adhesion Properties for Denture Base. J. Mech. Behav. Biomed. Mater. 2019, 98, 148–156. [Google Scholar] [CrossRef]
- Seyfi, J.; Goodarzi, V.; Wurm, F.R.; Shojaei, S.; Jafari-Nodoushan, M.; Najmoddin, N.; Khonakdar, H.A.; Baghersad, M.H.; Uzun, L. Developing Antibacterial Superhydrophobic Coatings Based on Polydimethylsiloxane/Silver Phosphate Nanocomposites: Assessment of Surface Morphology, Roughness and Chemistry. Prog. Org. Coat. 2020, 149, 105944. [Google Scholar] [CrossRef]
- Naderizadeh, S.; Dante, S.; Picone, P.; di Carlo, M.; Carzino, R.; Athanassiou, A.; Bayer, I.S. Bioresin-Based Superhydrophobic Coatings with Reduced Bacterial Adhesion. J. Colloid Interface Sci. 2020, 574, 20–32. [Google Scholar] [CrossRef]
- Ozkan, E.; Crick, C.C.; Taylor, A.; Allan, E.; Parkin, I.P. Copper-Based Water Repellent and Antibacterial Coatings by Aerosol Assisted Chemical Vapour Deposition. Chem. Sci. 2016, 7, 5126–5131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Jiang, Y.; Niu, T.; Huang, J. Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification. J. Mater. Chem. 2012, 22, 12562–12567. [Google Scholar] [CrossRef]
- Privett, B.J.; Youn, J.; Hong, S.A.; Lee, J.; Han, J.; Shin, J.H.; Schoenfisch, M.H. Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces. Langmuir 2011, 27, 9597–9601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boinovich, L.B.; Kaminsky, V.V.; Domantovsky, A.G.; Emelyanenko, K.A.; Aleshkin, A.V.; Zulkarneev, E.R.; Kiseleva, I.A.; Emelyanenko, A.M. Bactericidal Activity of Superhydrophobic and Superhydrophilic Copper in Bacterial Dispersions. Langmuir 2019, 35, 2832–2841. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Pytskii, I.S.; Kaminsky, V.V.; Chulkova, E.V.; Domantovsky, A.G.; Emelyanenko, K.A.; Sobolev, V.D.; Aleshkin, A.V.; Boinovich, L.B. Superhydrophobic Copper in Biological Liquids: Antibacterial Activity and Microbiologically Induced or Inhibited Corrosion. Colloids Surf. B Biointerfaces 2020, 185, 110622. [Google Scholar] [CrossRef]
- Montgomerie, Z.; Popat, K.C. Improved Hemocompatibility and Reduced Bacterial Adhesion on Superhydrophobic Titania Nanoflower Surfaces. Mater. Sci. Eng. C 2021, 119, 111503. [Google Scholar] [CrossRef]
- Subhadarshini, S.; Singh, R.; Goswami, D.K.; Das, A.K.; Das, N.C. Electrodeposited Cu2O Nanopetal Architecture as a Superhydrophobic and Antibacterial Surface. Langmuir 2019, 35, 17166–17176. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Yang, M.; Wang, K.; Zhang, Y.; He, J. CuO Nanoparticles-Containing Highly Transparent and Superhydrophobic Coatings with Extremely Low Bacterial Adhesion and Excellent Bactericidal Property. ACS Appl. Mater. Interfaces 2018, 10, 25717–25725. [Google Scholar] [CrossRef]
- Ozkan, E.; Mondal, A.; Singha, P.; Douglass, M.; Hopkins, S.P.; Devine, R.; Garren, M.; Manuel, J.; Warnock, J.; Handa, H. Fabrication of Bacteria- And Blood-Repellent Superhydrophobic Polyurethane Sponge Materials. ACS Appl. Mater. Interfaces 2020, 12, 51160–51173. [Google Scholar] [CrossRef]
- Liu, T.; Yin, B.; He, T.; Guo, N.; Dong, L.; Yin, Y. Complementary Effects of Nanosilver and Superhydrophobic Coatings on the Prevention of Marine Bacterial Adhesion. ACS Appl. Mater. Interfaces 2012, 4, 4683–4690. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Li, B.; Yang, H.; Fan, C.; Cui, W. Micro-/Nanometer Rough Structure of a Superhydrophobic Biodegradable Coating by Electrospraying for Initial Anti-Bioadhesion. Adv. Healthc. Mater. 2013, 2, 1314–1321. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Gadd, G.M.; Zhao, Q. Superhydrophobic Coatings for Urinary Catheters to Delay Bacterial Biofilm Formation and Catheter-Associated Urinary Tract Infection. ACS Appl. Bio Mater. 2020, 3, 282–291. [Google Scholar] [CrossRef]
- Chae, K.; Jang, W.Y.; Park, K.; Lee, J.; Kim, H.; Lee, K.; Lee, C.K.; Lee, Y.; Lee, S.H.; Seo, J. Antibacterial Infection and Immune-Evasive Coating for Orthopedic Implants. Sci. Adv. 2020, 6, eabb0025. [Google Scholar] [CrossRef] [PubMed]
- Dantas, L.C.D.M.; da Silva-Neto, J.P.; Dantas, T.S.; Naves, L.Z.; das Neves, F.D.; da Mota, A.S. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate. Int. J. Dent. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.; Rodrigues, D.; Oliveira, R.; Song, W.; Mano, J.F.; Azeredo, J. Superhydrophobic Poly(l-Lactic Acid) Surface as Potential Bacterial Colonization Substrate. AMB Express 2011, 1, 34. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro-and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Marmur, A. Superhydrophobic and Superhygrophobic Surfaces: From Understanding Non-Wettability to Design Considerations. Soft Matter 2013, 9, 7900–7904. [Google Scholar] [CrossRef]
- Morán, G.; Ramos-Chagas, G.; Hugelier, S.; Xie, X.; Boudjemaa, R.; Ruckebusch, C.; Sliwa, M.; Darmanin, T.; Gaucher, A.; Prim, D.; et al. Superhydrophobic Polypyrene Films to Prevent: Staphylococcus Aureus and Pseudomonas Aeruginosa Biofilm Adhesion on Surfaces: High Efficiency Deciphered by Fluorescence Microscopy. Photochem. Photobiol. Sci. 2018, 17, 1023–1035. [Google Scholar] [CrossRef]
- Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of Biofilm Formation by Quorum Quenching. Appl. Microbiol. Biotechnol. 2020, 104, 1871–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellinas, K.; Kefallinou, D.; Stamatakis, K.; Gogolides, E.; Tserepi, A. Is There a Threshold in the Antibacterial Action of Superhydrophobic Surfaces? ACS Appl. Mater. Interfaces 2017, 9, 39781–39789. [Google Scholar] [CrossRef]
- Miyahara, Y.; Mitamura, K.; Saito, N.; Takai, O. Fabrication of Microtemplates for the Control of Bacterial Immobilization. J. Vac. Sci. Technol. A Vac. Surf. Films 2009, 27, 1183–1187. [Google Scholar] [CrossRef]
- Fadeeva, E.; Truong, V.K.; Stiesch, M.; Chichkov, B.N.; Crawford, R.J.; Wang, J.; Ivanova, E.P. Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation. Langmuir 2011, 27, 3012–3019. [Google Scholar] [CrossRef]
Type of Medical Device-Associated Bacterial Infections | Common Causative Pathogens | Reference(s) |
---|---|---|
Central line-associated bloodstream infection | Coagulase-negative Staphylococci Staphylococcus aureus Enterococcus spp. Pseudomonas spp. | [11,13] |
Catheter-associated urinary tract infection | Escherichia coli Pseudomonas spp. Enterococcus spp. Staphylococcus aureus Coagulase-negative Staphylococci Enterobacter spp. | [12,17] |
Ventilator-associated pneumonia | Pseudomonas spp. Klebsiella spp. Enterococcus spp. Staphylococcus aureus Pseudomonas aeruginosa Acinetobacter baumannii | [11,17] |
Prosthetic heart valve infection | Staphylococcus aureus Staphylococcus epidermidis Streptococcus spp. | [11] |
Surgical site infection | Staphylococcus aureus Enterococcus spp. Acinetobacter spp. Pseudomonas spp. Escherichia coli | [17] |
Function | Functional Relevance to Biofilms | Reference(s) |
---|---|---|
Adhesion |
| [14,22] |
Bacterial aggregation |
| [14,21,22] |
Retention of water |
| [14,21,22] |
Cohesion |
| [14,22] |
Protective barrier |
| [21,22] |
Source of nutrients |
| [14,22] |
Binding of enzymes |
| [22] |
Natural Superhydrophobic Surface | Water Contact Angle | Reference(s) |
---|---|---|
Nelumbo nucifera (Lotus leaf) | 160° | [73,74] |
Oryza sativa L. (Rice leaf) | 157° | [75,76] |
Colocasia esculenta (Taro plant leaf) | 164° | [74,76] |
Setcreasea purpurea boom (Purple setcreasea) | 167° | [75,76] |
Polygonum perroliatum L. (Perfoliate knotweed) | 162° | [75,76] |
Gerris remiges (Water striders) | 167.6° | [77] |
Meimuna remiges (Homoptera) | 165° | [75,76] |
Diptera Tabanus chrysurus | 156° | [75,76] |
Cicada wings | 152° | [75] |
Substrate | Coated Nanomaterial (s) | Surface Pattern Scale | Water Contact Angle | Findings | Reference |
---|---|---|---|---|---|
Stainless steel | Silver nanoparticles treated with fluorosilane | Micro and nano (~200 nm) | 154° |
| [135] |
Titanium | Titanium dioxide nanotubes treated with perfluorooctyl-triethoxysilane | Nano (~400 nm) | 156° |
| [136] |
Stainless steel | Fluorosilane modified polystyrene/Ag microspheres | Nano (~40 nm) | 157.1° |
| [137] |
Stainless steel | MWCNTs | Micro and nano (5–15 µm) | 153.82 ± 1.19° |
| [138] |
Aluminum | Silica nanoparticles modified with fluorosilane | Nano (~200 nm) | 159 ± 1° |
| [139] |
Denture base resin | Hydroxyl functionalized fluoropolymer, polyurethane oligomer, epoxy group functionalized SiO2 nanoparticles | Micro and nano (189.6 nm) | 155.9° |
| [140] |
Thermoplastic polyurethane sheets | Polydimethylsiloxane and silver phosphate nanoparticles | Nano (Length not specified) | 152° |
| [141] |
Aluminum foil | Polyfurfuryl alcohol, fluorinated acrylic copolymer and silica nanoparticles | Nano (20–40 nm) | >150° |
| [142] |
Glass | Polydimethylsiloxane and copper nanoparticles | Micro and nano(3–5 µm) | 151 ± 2° |
| [143] |
Etched filter paper | Cellulose nanofibers with titania-perfluorooctyl trimethoxysilane | Nano(Length not specified) | 158° |
| [144] |
Glass | Fluorinated silica colloids | Micro and nano (Length not specified) | 167.7 ± 1.8° |
| [145] |
Copper alloy | Copper nanoparticles with perfluorooxysilane | Micro and nano (5–10 µm) | 170.1 ± 1.5° |
| [146] |
Copper alloy | Copper nanoparticles with fluorooxysilanes | Micro and nano (Length not specified) | 171° |
| [147] |
Titanium alloy | Silanized titania nanoflower | Nano(823.6 ± 163.6 nm) | 156.4 ± 3.8° |
| [148] |
Copper foil | Copper (I) oxide nanopetals | Nano (200–400 nm) | 154 ± 0.6° |
| [149] |
Glass | Fluorinated silica/copper (II) oxide nanoparticles | Micro and nano(Length not specified) | 160° |
| [150] |
Polyurethane sponge | Zinc oxide/copper nanoparticles and perfluorooctyltriethoxysilane | Micro and nano (Length not specified) | 161.6 ± 1° |
| [151] |
Copper | Silver nanoparticles with fluorosilane | Micro and nano (~300 nm) | 152° |
| [152] |
Polymer films | Poly(L-lactide) and modified silica nanoparticles | Micro and nano (1–2 µm) | 157° |
| [153] |
Substrate | Coated Nanomaterial(s) | Water Contact Angle | Findings | Reference |
---|---|---|---|---|
Glass | Poly(L-lactic)-dioxane | 154° |
| [157] |
Glass | Trimethylmethoxysilane | >150° |
| [163] |
Titanium | - | 166 ± 4° |
| [164] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, Y.; Wu, X.H.; Chieng, B.W.; Ibrahim, N.A.; Then, Y.Y. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. Nanomaterials 2021, 11, 1046. https://doi.org/10.3390/nano11041046
Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. Nanomaterials. 2021; 11(4):1046. https://doi.org/10.3390/nano11041046
Chicago/Turabian StyleChan, Yinghan, Xun Hui Wu, Buong Woei Chieng, Nor Azowa Ibrahim, and Yoon Yee Then. 2021. "Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections" Nanomaterials 11, no. 4: 1046. https://doi.org/10.3390/nano11041046
APA StyleChan, Y., Wu, X. H., Chieng, B. W., Ibrahim, N. A., & Then, Y. Y. (2021). Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. Nanomaterials, 11(4), 1046. https://doi.org/10.3390/nano11041046