Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Calculation Procedures
2.2. Experimental Procedures
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.C.; Qin, D.; Xia, Y.N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Kim, D.; Resasco, J.; Yu, Y.; Asiri, A.M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.G.; Huang, Z.N.; Xie, P.F.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.J.; Nie, A.M.; Pu, T.C.; Rehwoldt, M.; et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Ko, B.H.; Hwang, S.; Liu, Z.; Yao, Y.; Luc, W.; Cui, M.; Malkani, A.S.; Li, T.; Wang, X.; et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Alloys created between immiscible elements. Prog. Mater. Sci. 2005, 50, 413–509. [Google Scholar] [CrossRef]
- Miedema, A.R.; Chatel, P.F.D.; Boer, F.R.D. Cohesion in alloys—fundamentals of a semi-empirical model. Phys. B + C 1980, 100, 1–28. [Google Scholar] [CrossRef]
- Qi, W. Nanoscopic thermodynamics. Acc. Chem. Res. 2016, 49, 1587–1595. [Google Scholar] [CrossRef]
- Xiong, S.; Qi, W.; Huang, B.; Wang, M. Size-, shape-and composition-dependent alloying ability of bimetallic nanoparticles. ChemPhysChem 2011, 12, 1317–1324. [Google Scholar] [CrossRef]
- Zhao, M.; Issa, I.; Pfeifenberger, M.J.; Wurmshuber, M.; Kiener, D. Tailoring ultra-strong nanocrystalline tungsten nanofoams by reverse phase dissolution. Acta Mater. 2020, 182, 215–225. [Google Scholar] [CrossRef]
- Wu, W.; Hou, C.; Cao, L.; Liu, X.; Wang, H.; Lu, H.; Song, X. High hardness and wear resistance of W-Cu composites achieved by elemental dissolution and interpenetrating nanostructure. Nanotechnology 2020, 31. [Google Scholar] [CrossRef] [PubMed]
- Ahangarkani, M.; Zangeneh-Madar, K.; Borji, S.; Valefi, Z. The effect of post-sintering annealing on the erosion resistance of infiltrated W-Cu composites. Mater. Lett. 2017, 209, 566–570. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, S.Y.; Ham, H.J. Thermal conductivity of tungsten-copper composites. Thermochim. Acta 2012, 542, 2–5. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Zhao, S.; Zhang, H.; Yin, F.; Han, Y.; Liu, T. Microstructure and magnetic properties of MnZn ferrite powders prepared by nano-in-situ composite method. J. Alloy. Compd. 2020, 835. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Han, Y.; Liu, T.; Zhang, H.; Song, K.; Zhang, C. Preparation and characterization of Mn-Zn ferrites via nano-in-situ composite method. Solid State Sci. 2019, 98. [Google Scholar] [CrossRef]
- Lv, Y.; Fan, J.; Han, Y.; Liu, T.; Li, P.; Yan, H. The influence of modification route on the properties of W-0.3 wt% Y2O3 powder and alloy prepared by nano-in-situ composite method. J. Alloy. Compd. 2019, 774, 1140–1150. [Google Scholar] [CrossRef]
- Qi, W.H.; Huang, B.Y.; Wang, M.P. Size and shape-dependent formation enthalpy of binary alloy nanoparticles. Phys. B 2009, 404, 1761–1765. [Google Scholar] [CrossRef]
- Boer, F.R.D.; Boom, R.; Niessen, A.K.; Mattens, W.C.M.; Miedema, R. Cohesion in Metals: Transition Metal Alloys; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Fang, F.; Shu, X.L.; Deng, H.Q.; Hu, W.Y.; Zhu, M. Modified analytic EAM potentials for the binary immiscible alloy systems. Mater. Sci. Eng. A 2003, 355, 357–367. [Google Scholar] [CrossRef]
- Yang, J.Y.; Hu, W.Y.; Deng, H.Q.; Zhao, D.L. Temperature dependence of atomic relaxation and vibrations for the vicinal Ni(977) surface: A molecular dynamics study. Surf. Sci. 2004, 572, 439–448. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, W.; Han, S. Theoretical calculation of thermodynamic data for gold-rare earth alloys with the embedded-atom method. J. Alloy. Compd. 2006, 420, 83–93. [Google Scholar] [CrossRef]
- Zhang, R.F.; Liu, B.X. Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl. Phys. Lett. 2002, 81, 1219–1221. [Google Scholar] [CrossRef] [Green Version]
- Charles, K. Introduction to Solid State Physics; Wiley: Hoboken, NJ, USA, 1971. [Google Scholar]
- Shibata, T.; Bunker, B.A.; Zhang, Z.; Meisel, D.; Vardeman, C.F.; Gezelter, J.D. Size-dependent spontaneous alloying of Au-Ag nanoparticles. J. Am. Chem. Soc. 2002, 124, 11989–11996. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.K.; Jiang, P.; Che, J.G. Surface alloying of immiscible metals induced by surface state shift. Surf. Sci. 2003, 545, 199–210. [Google Scholar] [CrossRef]
- Yavari, A.R.; Desré, P.; Benameur, T. Mechanically driven alloying of immiscible elements. Phys. Rev. Lett. 1992, 68, 2235–2238. [Google Scholar] [CrossRef]
- Rizzo, H.F.; Massalski, T.B.; Nastasi, M. Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition. Metall. Trans. A 1993, 24, 1027–1037. [Google Scholar] [CrossRef]
- Ding, F.; Rosen, A.; Bolton, K. Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007, 35, 1–159. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, T.; Zhao, S.; Xu, Z.; Lv, Y.; Fan, J.; Han, Y. Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study. Nanomaterials 2021, 11, 1047. https://doi.org/10.3390/nano11041047
Zhang H, Liu T, Zhao S, Xu Z, Lv Y, Fan J, Han Y. Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study. Nanomaterials. 2021; 11(4):1047. https://doi.org/10.3390/nano11041047
Chicago/Turabian StyleZhang, Hongbo, Tao Liu, Siqi Zhao, Zhanyuan Xu, Yaozha Lv, Jinglian Fan, and Yong Han. 2021. "Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study" Nanomaterials 11, no. 4: 1047. https://doi.org/10.3390/nano11041047
APA StyleZhang, H., Liu, T., Zhao, S., Xu, Z., Lv, Y., Fan, J., & Han, Y. (2021). Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study. Nanomaterials, 11(4), 1047. https://doi.org/10.3390/nano11041047