Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of the Peanut Shell Waste Derived Activated Carbon (PAC)
2.3. Synthesis of the Peanut Shell Derived Activated Carbon/Molybdenum Oxide/Molybdenum Carbide (PAC/MoO2/Mo2C) Ternary Composites
2.4. Physical Characterization
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Structural, Morphological and Textural Characterization
3.2. XPS Analysis
3.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Xing, H.; Long, G.; Zheng, J.; Zhao, H.; Zong, Y.; Li, X.; Wang, Y.; Zhu, X.; Zhang, M.; Zheng, X. Interface engineering boosts electrochemical performance by fabricating CeO2@CoP Schottky conjunction for hybrid supercapacitors. Electrochim. Acta 2020, 337, 135817. [Google Scholar] [CrossRef]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2016, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Momodu, D.; Madito, M.; Barzegar, F.; Bello, A.; Khaleed, A.; Olaniyan, O.; Dangbegnon, J.; Manyala, N. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J. Solid State Electrochem. 2017, 21, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355. [Google Scholar] [CrossRef] [Green Version]
- Ndiaye, N.M.; Ngom, B.D.; Sylla, N.F.; Masikhwa, T.M.; Madito, M.J.; Momodu, D.; Ntsoane, T.; Manyala, N. Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor. J. Colloid Interface Sci. 2018, 532, 395–406. [Google Scholar] [CrossRef]
- Kang, L.; Huang, C.; Zhang, J.; Zhang, M.; Zhang, N.; Liu, S.; Ye, Y.; Luo, C.; Gong, Z.; Wang, C.; et al. Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors. Chem. Eng. J. 2020, 390, 124643. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngom, B.D.; Ndiaye, N.M.; Sylla, N.F.; Mutuma, B.K.; Manyala, N. Sustainable development of vanadium pentoxide carbon composites derived from Hibiscus sabdariffa family for application in supercapacitors. Sustain. Energy Fuels 2020, 4, 4814–4830. [Google Scholar] [CrossRef]
- Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hou, H.; Xu, W.; Duan, G.; He, S.; Liu, K.; Jiang, S. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2021, 56, 173–200. [Google Scholar] [CrossRef]
- Abioye, A.M.; Ani, F.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sustain. Energy Rev. 2015, 52, 1282–1293. [Google Scholar] [CrossRef]
- Dubey, P.; Shrivastav, V.; Maheshwari, P.H.; Sundriyal, S. Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon N. Y. 2020, 170, 1–29. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Musyoka, N.M.; Mutuma, B.K.; Manyala, N. Onion-derived activated carbons with enhanced surface area for improved hydrogen storage and electrochemical energy application. RSC Adv. 2020, 10, 26928–26936. [Google Scholar] [CrossRef]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Zhai, D.D.; Liu, H.; Wang, M.; Wu, D.; Chen, X.Y.; Zhang, Z.J. Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim. Acta 2019, 323, 134810. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Z.; Wan, P.; Wang, M.; Chen, X.; Mao, C. Low temperature and highly efficient oxygen/sulfur dual-modification of nanoporous carbon under hydrothermal conditions for supercapacitor application. J. Solid State Electrochem. 2020, 24, 761–770. [Google Scholar] [CrossRef]
- Liu, C.; Koyyalamudi, B.B.; Li, L.; Emani, S.; Wang, C.; Shaw, L.L. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon N. Y. 2016, 109, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Yaglikci, S.; Gokce, Y.; Yagmur, E.; Aktas, Z. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol. 2020, 41, 36–48. [Google Scholar] [CrossRef]
- Lin, G.; Wang, Q.; Yang, X.; Cai, Z.; Xiong, Y.; Huang, B. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Adv. 2020, 10, 17768–17776. [Google Scholar] [CrossRef]
- Muduli, S.; Naresh, V.; Martha, S.K. Boron, Nitrogen-Doped Porous Carbon Derived from Biowaste Orange Peel as Negative Electrode Material for Lead-Carbon Hybrid Ultracapacitors. J. Electrochem. Soc. 2020, 167, 090512. [Google Scholar] [CrossRef]
- Sylla, N.F.; Ndiaye, N.M.; Ngom, B.D.; Mutuma, B.K.; Momodu, D.; Chaker, M.; Manyala, N. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor. J. Colloid Interface Sci. 2020, 569, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, I.-S.; Park, Y.-K.; An, K.-H.; Kim, B.-J.; Jung, S.-C. Facile Preparation of Ni-Co Bimetallic Oxide/Activated Carbon Composites Using the Plasma in Liquid Process for Supercapacitor Electrode Applications. Nanomaterials 2019, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Banerjee, S.; Kar, K.K. Transition Metal Oxide/Activated Carbon-Based Composites as Electrode Materials for Supercapacitors. In Handbook of Nanocomposite Supercapacitor Materials II; Springer: Cham, Switzerland, 2020; pp. 145–178. [Google Scholar]
- Yang, Y.; Niu, H.; Qin, F.; Guo, Z.; Wang, J.; Ni, G.; Zuo, P.; Qu, S.; Shen, W. MnO2 doped carbon nanosheets prepared from coal tar pitch for advanced asymmetric supercapacitor. Electrochim. Acta 2020, 354, 136667. [Google Scholar] [CrossRef]
- Li, X.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.; Zheng, H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J. Power Sources 2013, 237, 80–83. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, J.; Zhang, X.; Zhou, H.; Wu, M. Hierarchical mesoporous MoO2 sphere as highly effective supercapacitor electrode. J. Taiwan Inst. Chem. Eng. 2019, 102, 212–217. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, H.; Zhai, L.; Nie, M.; Zhou, J.; Zhuo, S. Enhanced supercapacitor performance based on 3D porous graphene with MoO2 nanoparticles. J. Mater. Res. 2017, 32, 292–300. [Google Scholar] [CrossRef]
- Si, H.; Sun, L.; Zhang, Y.; Zhang, Y.; Bai, L.; Zhang, Y. Carbon-coated MoO2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors. Dalt. Trans. 2019, 48, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yan, X.; Zhou, C.; Wang, D.; Zhu, Y.; Wang, J.; Tao, X.; Cheng, X. Promising carbon nanosheets decorated by self-assembled MoO2 nanoparticles: Controllable synthesis, boosting performance and application in symmetric coin cell supercapacitors. Ceram. Int. 2020, 46, 19981–19989. [Google Scholar] [CrossRef]
- Weng, Y.T.; Tsai, C.B.; Ho, W.H.; Wu, N.L. Polypyrrole/carbon supercapacitor electrode with remarkably enhanced high-temperature cycling stability by TiC nanoparticle inclusion. Electrochem. Commun. 2013, 27, 172–175. [Google Scholar] [CrossRef]
- Xiao, Y.; Hwang, J.Y.; Sun, Y.K. Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage. J. Mater. Chem. A 2016, 4, 10379–10393. [Google Scholar] [CrossRef]
- Tian, J.; Shi, Y.; Fan, W.; Liu, T. Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes. Compos. Commun. 2019, 12, 21–25. [Google Scholar] [CrossRef]
- Ihsan, M.; Wang, H.; Majid, S.R.; Yang, J.; Kennedy, S.J.; Guo, Z.; Liu, H.K. MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon N. Y. 2016, 96, 1200–1207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-B.; Ma, X.-J.; Kong, L.-B.; Liu, M.-C.; Luo, Y.-C.; Kang, L. Intermetallic Molybdenum Carbide for Pseudocapacitive Electrode Material. J. Electrochem. Soc. 2016, 163, A2441–A2446. [Google Scholar] [CrossRef]
- Hou, C.; Wang, J.; Du, W.; Wang, J.; Du, Y.; Liu, C.; Zhang, J.; Hou, H.; Dang, F.; Zhao, L.; et al. One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 2019, 7, 13460–13472. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, X.; Wei, T.; Zhou, C.; Wu, W.; Zeng, L.; Zhu, R.; Cheng, K.; Ye, K.; Zhu, K.; et al. Porous β-Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J. Colloid Interface Sci. 2020, 563, 104–111. [Google Scholar] [CrossRef]
- Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Karuppasamy, K.; Haq, Z.U.; Seo, Y.-S.; Chun, S.-H.; Kim, H.-S.; Jung, J. Hybrid Design Using Carbon Nanotubes Decorated with Mo2C and W2C Nanoparticles for Supercapacitors and Hydrogen Evolution Reactions. ACS Sustain. Chem. Eng. 2020, 8, 12248–12259. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Ouyang, Y.; Gao, Q.; Ouyang, L.; Hu, R.; Liu, J.; Zhu, M. Hierarchical MoO2/Mo2C/C Hybrid Nanowires as High-Rate and Long-Life Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 19987–19993. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Wang, H.; Feng, J.; Zhang, M.; Yuan, R.; Chai, Y. In-situ carbonization for template-free synthesis of MoO2-Mo2C-C microspheres as high-performance lithium battery anode. Chem. Eng. J. 2018, 337, 74–81. [Google Scholar] [CrossRef]
- Momodu, D.; Sylla, N.F.; Mutuma, B.; Bello, A.; Masikhwa, T.; Lindberg, S.; Matic, A.; Manyala, N. Stable ionic-liquid-based symmetric supercapacitors from Capsicum seed porous carbons. J. Electroanal. Chem. 2019, 838, 119–128. [Google Scholar] [CrossRef]
- Men, B.; Guo, P.; Sun, Y.; Tang, Y.; Chen, Y.; Pan, J.; Wan, P. High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors. J. Mater. Sci. 2019, 54, 2446–2457. [Google Scholar] [CrossRef]
- Liu, X.; Ji, W.; Liang, J.; Peng, L.; Hou, W. MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties. Phys. Chem. Chem. Phys. 2014, 16, 20570–20577. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Luo, S.H.; Yan, S.X.; Wang, Z.Y.; Wang, Q.; Feng, J.; Wang, Y.L.; Yi, T.F. Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochim. Acta 2019, 307, 293–301. [Google Scholar] [CrossRef]
- Li, H.; Ye, H.; Xu, Z.; Wang, C.; Yin, J.; Zhu, H. Freestanding MoO2/Mo2C imbedded carbon fibers for Li-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 2908–2914. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmed, Z.; Kumar, R.; Jha, S.N.; Bhattacharyya, D.; Bera, C.; Bagchi, V. In-situ modulation of silica-supported MoO2/Mo2C heterojunction for enhanced hydrogen evolution reaction. Catal. Sci. Technol. 2020, 10, 4776. [Google Scholar] [CrossRef]
- Frauwallner, M.L.; López-Linares, F.; Lara-Romero, J.; Scott, C.E.; Ali, V.; Hernández, E.; Pereira-Almao, P. Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl. Catal. A Gen. 2011, 394, 62–70. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, C.; Zhao, Q.; Li, Z.; Shao, M.; Deng, X.; Liu, X.; Xu, X. Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts. Ceram. Int. 2016, 42, 2198–2203. [Google Scholar] [CrossRef]
- Huo, J.; Xue, Y.; Liu, Y.; Ren, Y.; Yue, G. Polyvinyl alcohol-assisted synthesis of porous MoO2/C microrods as anodes for lithium-ion batteries. J. Electroanal. Chem. 2020, 857, 113751. [Google Scholar] [CrossRef]
- Zheng, Q.; Ren, P.; Peng, Y.; Zhou, W.; Yin, Y.; Wu, H.; Gong, W.; Wang, W.; Tang, D.; Zou, B. In-Plane Anisotropic Raman Response and Electrical Conductivity with Robust Electron−Photon and Electron−Phonon Interactions of Air Stable MoO2 Nanosheets. J. Phys. Chem. Lett 2019, 10, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, W.; Zhi, L.; Kang, D.; Liu, J.; Su, Z. Study on the structure and electrochemical performances of amphiphilic carbonaceous material-based porous carbon electrode materials. Mater. Lett. 2020, 278, 128430. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, L.; Fang, C.; Li, T.; Chen, J.; Yang, M.; Zhang, Q. Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. J. Mater. Res. Technol. 2020, 9, 3261–3271. [Google Scholar] [CrossRef]
- Seaton, N.A. Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem. Eng. Sci. 1991, 46, 1895–1909. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, L.; Wu, X.; Guo, N.; Guo, J.; Hou, S.; Tong, F.; Jia, D.; Zhang, H. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Xu, X.; Liu, X. Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustain. Chem. Eng 2018, 6, 1446–1455. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S.; Zhong, Y.; Cai, R.; Li, L.; Shao, Z. Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries. J. Power Sources 2016, 307, 552–560. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Q.; Zhang, H.; Xu, H.; Zhang, Y. Fabrication and application of hierarchical mesoporous MoO2/Mo2C/C microspheres. J. Energy Chem. 2018, 27, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Lan, R.; Hu, Z.; Chen, Z. The preparation of Ni/Mo-based ternary electrocatalysts by the self-propagating initiated nitridation reaction and their application for efficient hydrogen production. Nanoscale 2019, 11, 17093–17103. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Wang, Y.; Liu, C.H.; Li, S.L.; Wang, Y.G.; Dong, L.Z.; Dai, Z.H.; Li, Y.F.; Lan, Y.Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Zhou, W.; Feng, Q.; Lei, Y.; Zhang, Y.; Chen, Y.; Qin, J. Charge Engineering of Mo2C@Defect-Rich N-Doped Carbon Nanosheets for Efficient Electrocatalytic H2 Evolution. Nano-Micro Lett. 2019, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ji, X.; Yang, L.; Jia, J.; Cheng, S.; Chen, H.; Wu, Z.-S.; Passarello, D.; Liu, M. Targeted synthesis and reaction mechanism discussion of Mo2C based insertion-type electrodes for advanced pseudocapacitors †. J. Mater. Chem. A 2020, 8, 7819–7827. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Mendoza-Sanchez, B.; Fernandez, V.; Veenstra, R.; Dukstiene, N.; Roberts, A.; Fairley, N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151–161. [Google Scholar] [CrossRef]
- Xie, X.; Lin, L.; Liu, R.Y.; Jiang, Y.F.; Zhu, Q.; Xu, A.W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055–8061. [Google Scholar] [CrossRef]
- Yang, X.; Feng, X.; Tan, H.; Zang, H.; Wang, X.; Wang, Y.; Wang, E.; Li, Y. N-Doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 3947–3954. [Google Scholar] [CrossRef]
- Devina, W.; Hwang, J.; Kim, J. Synthesis of MoO2/Mo2C/RGO composite in supercritical fluid and its enhanced cycling stability in Li-ion batteries. Chem. Eng. J. 2018, 345, 1–12. [Google Scholar] [CrossRef]
- Murugappan, K.; Anderson, E.M.; Teschner, D.; Jones, T.E.; Skorupska, K.; Román-Leshkov, Y. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 2018, 1, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T.R. Understanding the promoter effect of Cu and Cs over highly effective Β-Mo2C catalysts for the reverse water-gas shift reaction. Appl. Catal. B Environ. 2019, 244, 889–898. [Google Scholar] [CrossRef]
- Anandan, C.; Mohan, L.; Babu, P.D. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S. Appl. Surf. Sci. 2014, 296, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lin, M.; Fang, K.; Meng, Y.; Sun, Y. Preparation of nanostructured molybdenum carbides for CO hydrogenation. RSC Adv. 2014, 4, 20948–20954. [Google Scholar] [CrossRef]
- Song, X.; Ma, X.; Li, Y.; Ding, L.; Jiang, R. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci. 2019, 487, 189–197. [Google Scholar] [CrossRef]
- Payne, B.P.; Biesinger, M.C.; McIntyre, N.S. The study of polycrystalline nickel metal oxidation by water vapour. J. Electron Spectros. Relat. Phenomena 2009, 175, 55–65. [Google Scholar] [CrossRef]
- Gao, Q.; Zhao, X.; Xiao, Y.; Zhao, D.; Cao, M. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries. Nanoscale 2014, 6, 6151–6157. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Qin, G.; Han, P.; Guo, X.; Cao, S.; Liu, F. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Compos. Part B Eng. 2020, 193, 108004. [Google Scholar] [CrossRef]
- Sylla, N.F.; Ndiaye, N.M.; Ngom, B.D.; Momodu, D.; Madito, M.J.; Mutuma, B.K.; Manyala, N.; Manyala, N. Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.; Chen, X.; Zhang, X.; Huang, T.; Yu, A. Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithium-Oxygen Batteries. ChemElectroChem 2018, 5, 2666–2671. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Lu, Y.; Wang, W.; Peng, T.; Zhang, Y.; Guo, Y.; Wang, Y.; Huo, K.; Kim, J.K.; et al. Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors. Carbon N. Y. 2019, 143, 335–342. [Google Scholar] [CrossRef]
- Arvani, M.; Keskinen, J.; Lupo, D.; Honkanen, M. Current collectors for low resistance aqueous flexible printed supercapacitors. J. Energy Storage 2020, 29, 101384. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.S.; Zhu, T.; Madhavi, S.; Lou, X.W. One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chem. Commun. 2010, 46, 6906–6908. [Google Scholar] [CrossRef] [PubMed]
- Giardi, R.; Porro, S.; Topuria, T.; Thompson, L.; Pirri, C.F.; Kim, H.C. One-pot synthesis of graphene-molybdenum oxide hybrids and their application to supercapacitor electrodes. Appl. Mater. Today 2015, 1, 27–32. [Google Scholar] [CrossRef]
- Vikraman, D.; Hussain, S.; Karuppasamy, K.; Feroze, A.; Kathalingam, A.; Sanmugam, A.; Chun, S.H.; Jung, J.; Kim, H.S. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B Environ. 2020, 264, 118531. [Google Scholar] [CrossRef]
- Nugent, J.M.; Santhanam, K.S.V.; Rubio, A.; Ajayan, P.M. Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes. NANO Lett. 2001, 1, 87–91. [Google Scholar] [CrossRef]
- Ndiaye, N.M.; Sylla, N.F.; Ngom, B.D.; Mutuma, B.K.; Dangbegnon, J.K.; Ray, S.C.; Manyala, N. Nitridation Temperature Effect on Carbon Vanadium Oxynitrides for a Symmetric Supercapacitor. Nanomaterials 2019, 9, 1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, M.S.; Chen, J.; Chen, L.; Xi, Y.; Zhang, C.; Wan, B.; Hu, C. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A 2015, 4, 667–674. [Google Scholar] [CrossRef]
Samples | D-Band (cm−1) | G-Band (cm−1) | ID/IG Ratio |
---|---|---|---|
PAC/MoO2/Mo2C-0.5 | 1349 | 1583 | 1.03 |
PAC/MoO2/Mo2C-1 | 1341 | 1607 | 1.01 |
PAC/MoO2/Mo2C-2 | 1360 | 1610 | 0.97 |
Samples | BET SSA (m2 g−1) | Total Pore Volume (cm3 g−1) | Micropore Volume (cm3 g−1) | Micropore SSA (m2 g−1) | Mesopore Volume (cm3 g−1) |
---|---|---|---|---|---|
PAC/MoO2/Mo2C-0.5 | 804 | 0.44 | 0.23 | 670 | 0.21 |
PAC/MoO2/Mo2C-1 | 711 | 0.40 | 0.19 | 575 | 0.21 |
PAC/MoO2/Mo2C-2 | 301 | 0.20 | 0.07 | 165 | 0.13 |
Elemental Composition (at.%) | |||
---|---|---|---|
Samples | C 1s | O 1s | Mo 3d |
PAC/MoO2/Mo2C-0.5 | 73.9 | 17.5 | 8.6 |
PAC/MoO2/Mo2C-1 | 62.4 | 22.6 | 15.0 |
PAC/MoO2/Mo2C-2 | 54.9 | 24.9 | 20.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sylla, N.F.; Sarr, S.; Ndiaye, N.M.; Mutuma, B.K.; Seck, A.; Ngom, B.D.; Chaker, M.; Manyala, N. Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites. Nanomaterials 2021, 11, 1056. https://doi.org/10.3390/nano11041056
Sylla NF, Sarr S, Ndiaye NM, Mutuma BK, Seck A, Ngom BD, Chaker M, Manyala N. Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites. Nanomaterials. 2021; 11(4):1056. https://doi.org/10.3390/nano11041056
Chicago/Turabian StyleSylla, Ndeye F., Samba Sarr, Ndeye M. Ndiaye, Bridget K. Mutuma, Astou Seck, Balla D. Ngom, Mohamed Chaker, and Ncholu Manyala. 2021. "Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites" Nanomaterials 11, no. 4: 1056. https://doi.org/10.3390/nano11041056
APA StyleSylla, N. F., Sarr, S., Ndiaye, N. M., Mutuma, B. K., Seck, A., Ngom, B. D., Chaker, M., & Manyala, N. (2021). Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites. Nanomaterials, 11(4), 1056. https://doi.org/10.3390/nano11041056