The Effect of Shear Deformation on C-N Structure under Pressure up to 80 GPa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TEM Study
3.2. Raman Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popov, M.Y.; Churkin, V.D.; Kulnitskiy, B.A.; Kirichenko, A.N.; Bulatov, K.M.; Bykov, A.A.; Zinin, P.V.; Blank, V. Transformation of diamond to fullerene-type onions at pressure 70 GPa and temperature 2400 K. Nanotechnology 2020, 31, 315602. [Google Scholar] [CrossRef]
- Blank, V.D.; Churkin, V.D.; Kulnitskiy, B.A.; Perezhogin, I.A.; Kirichenko, A.N.; Denisov, V.N.; Erohin, S.V.; Sorokin, P.B.; Popov, M.Y. Phase diagram of carbon and the factors limiting the quantity and size of natural diamonds. Nanotechnology 2018, 29, 115603. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.; Cohen, M.L. Prediction of new low compressibility solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goglio, G.; Foy, D.; Demazeau, G. State of Art and recent trends in bulk carbon nitrides synthesis. Mater. Sci. Eng. R-Rep. 2008, 58, 195–227. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.S.; Xu, B.; Tian, Y.J. Recent Advances in Superhard Materials. In Annual Review of Materials Research; Clarke, D.R., Ed.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 46, pp. 383–406. [Google Scholar]
- Horvath-Bordon, E.; Riedel, R.; McMillan, P.F.; Kroll, P.; Miehe, G.; van Aken, P.A.; Zerr, A.; Hoppe, P.; Shebanova, O.; McLaren, I.; et al. High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angew. Chem.-Int. Ed. 2007, 46, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Ohfuji, H.; Shinmei, T.; Irifune, T. Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diam. Relat. Mater. 2011, 20, 819–825. [Google Scholar] [CrossRef]
- Kojima, Y.; Ohfuji, H. Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K. Diam. Relat. Mater. 2013, 39, 1–7. [Google Scholar] [CrossRef]
- Sougawa, M.; Takarabe, K.; Mori, Y.; Okada, T.; Yagi, T.; Kariyazaki, H.; Sueoka, K. Bulk modulus and structural changes of carbon nitride C2N2(CH2) under pressure: The strength of C-N single bond. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Stavrou, E.; Lobanov, S.; Dong, H.F.; Oganov, A.R.; Prakapenka, V.B.; Konopkova, Z.; Goncharov, A.F. Synthesis of Ultra-incompressible spa-Hybridized Carbon Nitride with 1:1 Stoichiometry. Chem. Mater. 2016, 28, 6925–6933. [Google Scholar] [CrossRef]
- Gao, X.; Yin, H.; Chen, P.W.; Liu, J.J. Shock-induced phase transition of g-C3N4 to a new C3N4 phase. J. Appl. Phys. 2019, 126, 8. [Google Scholar] [CrossRef]
- Salamat, A.; Woodhead, K.; McMillan, P.F.; Cabrera, R.Q.; Rahman, A.; Adriaens, D.; Cora, F.; Perrillat, J.P. Tetrahedrally bonded dense C2N3H with a defective wurtzite structure: X-ray diffraction and Raman scattering results at high pressure and ambient conditions. Phys. Rev. B 2009, 80, 104106. [Google Scholar] [CrossRef]
- Ming, L.C.; Zinin, P.; Meng, Y.; Liu, X.R.; Hong, S.M.; Xie, Y. A cubic phase of C3N4 synthesized in the diamond-anvil cell. J. Appl. Phys. 2006, 99, 033520. [Google Scholar] [CrossRef]
- Goncharov, A.F. Graphite at high pressures: Amorphization at 44 GPa. High Press. Res. 1992, 8, 607–616. [Google Scholar] [CrossRef]
- Aksenenkov, V.V.; Blank, V.D.; Borovikov, N.F.; Danilov, V.G.; Kozorezov, K.I. Production of diamond single crystals in graphite under plastic deformation. Physics-Doklady 1994, 39, 700–703. [Google Scholar]
- Bridgman, P.W. Effects of High Shearing Stress Combined with High Hydrostatic Pressure. Phys. Rev. 1935, 48, 825–847. [Google Scholar] [CrossRef]
- Blank, V.D.; Popov, M.Y.; Kulnitskiy, B.A. The Effect of Severe Plastic Deformations on Phase Transitions and Structure of Solids. Mater. Trans. 2019, 60, 1500–1505. [Google Scholar] [CrossRef] [Green Version]
- Popov, M.; Koga, Y.; Fujiwara, S.; Mavrin, B.N.; Blank, V.D. Carbon nanocluster-based superhard materials. New Diam. Front. Carbon Technol. 2002, 12, 229–260. [Google Scholar]
- Khabashesku, V.N.; Zimmerman, J.L.; Margrave, J.L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264–3270. [Google Scholar] [CrossRef]
- Zimmerman, J.L.; Williams, R.; Khabashesku, V.N.; Margrave, J.L. Synthesis of spherical carbon nitride nanostructures. Nano Lett. 2001, 1, 731–734. [Google Scholar] [CrossRef]
- Foy, D.; Demazeau, G.; Florian, P.; Massiot, D.; Labrugère, C.; Goglio, G. Modulation of the crystallinity of hydrogenated nitrogen-rich graphitic carbon nitrides. J. Solid State Chem. 2009, 182, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Popov, M. Pressure measurements from Raman spectra of stressed diamond anvils. J. Appl. Phys. 2004, 95, 5509–5514. [Google Scholar] [CrossRef] [Green Version]
- Casanovas, J.; Ricart, J.M.; Rubio, J.; Illas, F.; Jiménez-Mateos, J.M. Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials. J. Am. Chem. Soc. 1996, 118, 8071–8076. [Google Scholar] [CrossRef]
- Nesting, D.C.; Badding, J.V. High-pressure synthesis of sp(2)-bonded carbon nitrides. Chem. Mater. 1996, 8, 1535–1539. [Google Scholar] [CrossRef]
- Rodil, S.E.; Muhl, S. Bonding in amorphous carbon nitride. Diam. Relat. Mater. 2004, 13, 1521–1531. [Google Scholar] [CrossRef]
- Jimenez, I.; Gago, R.; Albella, J.M.; Caceres, D.; Vergara, I. Spectroscopy of pi bonding in hard graphitic carbon nitride films: Superstructure of basal planes and hardening mechanisms. Phys. Rev. B 2000, 62, 4261–4264. [Google Scholar] [CrossRef]
- Lajaunie, L.; Pardanaud, C.; Martin, C.; Puech, P.; Hu, C.; Biggs, M.J.; Arenal, R. Advanced spectroscopic analyses on a:C-H materials: Revisiting the EELS characterization and its coupling with multi-wavelength Raman spectroscopy. Carbon 2017, 112, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Zinin, P.V.; Ming, L.C.; Sharma, S.K.; Khabashesku, V.N.; Liu, X.R.; Hong, S.M.; Endo, S.; Acosta, T. Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase. Chem. Phys. Lett. 2009, 472, 69–73. [Google Scholar] [CrossRef]
- Odake, S.; Zinin, P.V.; Hellebrand, E.; Prakapenka, V.; Liu, Y.S.; Hong, S.M.; Burgess, K.; Ming, L.C. Formation of the high pressure graphite and BC8 phases in a cold compression experiment by Raman scattering. J. Raman Spectrosc. 2013, 44, 1596–1602. [Google Scholar] [CrossRef]
- Lugvishchuk, D.S.; Mitberg, E.B.; Kulnitskiy, B.A.; Skryleva, E.A.; Parkhomenko, Y.N.; Popov, M.Y.; Churkin, V.D.; Mordkovich, V.Z. Irreversible high pressure phase transformation of onion-like carbon due to shell confinement. Diam. Relat. Mater. 2020, 107, 7. [Google Scholar] [CrossRef]
- Popov, M. Raman and infrared study of high-pressure atomic phase of nitrogen. Phys. Lett. A 2005, 334, 317–325. [Google Scholar] [CrossRef]
- Houska, J. Maximum N content in a-CNx by ab-initio simulations. Acta Mater. 2019, 174, 189–194. [Google Scholar] [CrossRef]
- Dong, H.F.; Oganov, A.R.; Zhu, Q.; Qian, G.R. The phase diagram and hardness of carbon nitrides. Sci. Rep. 2015, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solozhenko, V.; Solozhenko, E.; Zinin, P.; Ming, L.; Chen, J.; Parise, J. Equation of State and Phase Stability of Turbostratic Carbon Nitride. J. Phys. Chem. Solids 2003, 64, 1265–1270. [Google Scholar] [CrossRef]
- Pashkin, E.Y.; Pankov, A.M.; Kulnitskiy, B.A.; Perezhogin, I.A.; Karaeva, A.R.; Mordkovich, V.Z.; Popov, M.Y.; Sorokin, P.B.; Blank, V.D. The unexpected stability of multiwall nanotubes under high pressure and shear deformation. Appl. Phys. Lett. 2016, 109, 081904. [Google Scholar] [CrossRef]
- Yao, M.; Fan, X.; Zhang, W.; Bao, Y.; Liu, R.; Sundqvist, B.; Liu, B. Uniaxial-stress-driven transformation in cold compressed glassy carbon. Appl. Phys. Lett. 2017, 111, 101901. [Google Scholar] [CrossRef]
- Yang, X.; Yao, M.; Wu, X.; Liu, S.; Chen, S.; Yang, K.; Liu, R.; Cui, T.; Sundqvis, B.; Liu, B. Novel Superhard sp3 Carbon Allotrope from Cold-Compressed C70 Peapods. Phys. Rev. Lett. 2017, 118, 245701. [Google Scholar] [CrossRef] [PubMed]
- Shiell, T.B.; de Tomas, C.; McCulloch, D.G.; McKenzie, D.R.; Basu, A.; Suarez-Martinez, I.; Marks, N.A.; Boehler, R.; Haberl, B.; Bradby, J.E. In situ analysis of the structural transformation of glassy carbon under compression at room temperature. Phys. Rev. B 2019, 99, 024114. [Google Scholar] [CrossRef] [Green Version]
- Pankov, A.M.; Bredikhina, A.S.; Kulnitskiy, B.A.; Perezhogin, I.A.; Skryleva, E.A.; Parkhomenko, Y.N.; Popov, M.Y.; Blank, V.D. Transformation of multiwall carbon nanotubes to onions with layers cross-linked by sp3 bonds under high pressure and shear deformation. AIP Adv. 2017, 7, 085218. [Google Scholar] [CrossRef] [Green Version]
- Blank, V.D.; Churkin, V.D.; Kulnitskiy, B.A.; Perezhogin, I.A.; Kirichenko, A.N.; Erohin, S.V.; Sorokin, P.B.; Popov, M.Y. Pressure-Induced Transformation of Graphite and Diamond to Onions. Crystals 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Barbee, T.W. Metastability of atomic phases of nitrogen. Phys. Rev. B 1993, 48, 9327–9330. [Google Scholar] [CrossRef] [PubMed]
- Teter, D.M.; Hemley, R.J. Low-Compressibility Carbon Nitrides. Science 1996, 271, 53. [Google Scholar] [CrossRef]
Sample | C, at. % | N, at. % |
---|---|---|
Initial | 58 | 42 |
20–25 GPa shear | 76 | 24 |
53–57 GPa shear | 93 | 7 |
70–79 GPa shear | 99 | ~1 |
Sample | sp2 Content |
---|---|
Initial | 1 |
20–25 GPa shear | 0.92 |
53–57 GPa shear | 0.77 |
70–79 GPa shear | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churkin, V.; Kulnitskiy, B.; Zinin, P.; Blank, V.; Popov, M. The Effect of Shear Deformation on C-N Structure under Pressure up to 80 GPa. Nanomaterials 2021, 11, 828. https://doi.org/10.3390/nano11040828
Churkin V, Kulnitskiy B, Zinin P, Blank V, Popov M. The Effect of Shear Deformation on C-N Structure under Pressure up to 80 GPa. Nanomaterials. 2021; 11(4):828. https://doi.org/10.3390/nano11040828
Chicago/Turabian StyleChurkin, Valentin, Boris Kulnitskiy, Pavel Zinin, Vladimir Blank, and Mikhail Popov. 2021. "The Effect of Shear Deformation on C-N Structure under Pressure up to 80 GPa" Nanomaterials 11, no. 4: 828. https://doi.org/10.3390/nano11040828
APA StyleChurkin, V., Kulnitskiy, B., Zinin, P., Blank, V., & Popov, M. (2021). The Effect of Shear Deformation on C-N Structure under Pressure up to 80 GPa. Nanomaterials, 11(4), 828. https://doi.org/10.3390/nano11040828