Obtaining and Properties of a Photocatalytic Composite Material of the “SiO2–TiO2” System Based on Various Types of Silica Raw Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sol–Gel Synthesis Raw Materials
2.2. Methods for Determining the Properties of Raw and Synthesized Materials
2.3. Study of the Features of Sols, Gels and Synthesized TiO2 Particles
2.4. Determination of Photocatalytic Activity of Materials
3. Properties of Components and Composition of the Raw Mix for the PCM Sol–Gel Synthesis
3.1. Properties of Silica Materials
3.2. Component Composition and Properties of Sols
4. PCM Production Technology by the Sol–Gel Method
5. PCM Properties
5.1. Physicochemical Properties
5.2. Photocatalytic Activity of Composite Materials
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Photocatalysts—Applications and Attributes; BoD–Books on Demand: Norderstedt, Germany, 2019.
- Gorgani, M.; Kaleji, B.K. Structural, photocatalytic and surface analysis of Nb/Ag codoped TiO2 mesoporous nanoparticles. J. Sol-Gel Sci. Technol. 2020, 96, 728–741. [Google Scholar] [CrossRef]
- Quintero, Y.; Mosquera, E.; Diosa, J.; García, A. Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J. Sol-Gel Sci. Technol. 2020, 94, 477–485. [Google Scholar] [CrossRef]
- Li, Q.Y.; Sun, H.; Sun, S.; Liu, J.G.; Cui, S.P.; Nie, Z.R. Synthesis and photocatalytic performance of a novel hollow network Fe3O4/SiO2/meso-TiO2 (FSmT) composite microspheres. J. Sol-Gel Sci. Technol. 2019, 90, 339–347. [Google Scholar] [CrossRef]
- Brichkov, A.S.; Brichkova, V.Y.; Paukshtis, E.A.; Chen, Y.W.; Kozik, V.V. Effects of preparation parameters on the characteristics of SiO2- and CoxOy-modified-TiO2 colloids prepared by hydrolysis of titanium alkoxide. J. Sol-Gel Sci. Technol. 2020, 94, 607–615. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Domeneguetti, R.R.; Wong Chi Man, M.; Barud, H.S.; Teixeira-Neto, E.; Ribeiro, S.J.L. Bacterial cellulose–SiO2 @TiO2 organic–inorganic hybrid membranes with self-cleaning properties. J. Sol-Gel Sci. Technol. 2019, 89, 2–11. [Google Scholar] [CrossRef]
- Kwon, C.H.; Kim, J.H.; Jung, I.S.; Shin, H.; Yoon, K.H. Preparation and characterization of TiO2-SiO2 nano-composite thin films. Ceram. Int. 2003, 29, 851–856. [Google Scholar] [CrossRef]
- Sun, Z.; Bai, C.; Zheng, S.; Yang, X.; Frost, R.L. A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Appl. Catal. A Gen. 2013, 458, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, G.; Sun, Z.; Zheng, S. Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation. Powder Technol. 2014, 262, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ayzenshtadt, A.; Lesovik, V.; Frolova, M.; Tutygin, A.; Danilov, V. Nanostructured wood mineral composite. Procedia Eng. 2015, 117, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Pinho, L.; Mosquera, M.J. Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: Influence of particle size and loading. Appl. Catal. B Environ. 2013, 134, 205–221. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Liseitsev, Y.L.; Timokhin, R.A.; Bituyev, A.V.; Zaiakhanov, M.Y.; Mochalov, A.V. Composite binders for concretes with improved shock resistance. Mag. Civ. Eng. 2019, 85. [Google Scholar] [CrossRef]
- Fediuk, R.; Pak, A.; Kuzmin, D. Fine-Grained Concrete of Composite Binder. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 262. [Google Scholar]
- Imran, M.; Riaz, S.; Naseem, S. Synthesis and Characterization of Titania Nanoparticles by Sol-gel Technique. Mater. Today Proc. 2015, 2, 5455–5461. [Google Scholar] [CrossRef]
- Hendrix, Y.; Lazaro, A.; Yu, Q.L.; Brouwers, H.J.H. Influence of synthesis conditions on the properties of photocatalytic titania-silica composites. J. Photochem. Photobiol. A Chem. 2019, 371, 25–32. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, Y.; Zhang, G.; Wu, Z.; Zheng, S. The influence of carriers on the structure and photocatalytic activity of TiO2/diatomite composite photocatalysts. Adv. Powder Technol. 2015, 26, 595–601. [Google Scholar] [CrossRef]
- Moongraksathum, B.; Chen, Y.W. Preparation and characterization of SiO2–TiO2 neutral sol by peroxo sol–gel method and its application on photocatalytic degradation. J. Sol-Gel Sci. Technol. 2016, 77, 288–297. [Google Scholar] [CrossRef]
- Xia, Y.; Li, F.; Jiang, Y.; Xia, M.; Xue, B.; Li, Y. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite. Appl. Surf. Sci. 2014, 303, 290–296. [Google Scholar] [CrossRef]
- Gubareva, E.N.; Ogurtsova, Y.N.; Strokova, V.V.; Labuzova, M.V. Comparative activity evaluation for silica raw materials and photocatalytic composite materials based on them. Obogashchenie Rud 2019. [Google Scholar] [CrossRef]
- Antonenko, M.V.; Ogurtsova, Y.N.; Strokova, V.V.; Gubareva, E.N. The effect of titanium dioxide sol stabilizer on the properties of photocatalytic composite material. In International Scientific Conference on Innovations and Technologies in Construction; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Fediuk, R.S.; Yevdokimova, Y.G.; Smoliakov, A.K.; Stoyushko, N.Y.; Lesovik, V.S. Use of geonics scientific positions for designing of building composites for protective (fortification) structures. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 221. [Google Scholar]
- Daoud, W.A. Self-Cleaning Materials and Surfaces: A Nanotechnology Approach; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; ISBN 9781119991779. [Google Scholar]
- Guo, M.Z.; Maury-Ramirez, A.; Poon, C.S. Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. J. Clean. Prod. 2016, 112, 3583–3588. [Google Scholar] [CrossRef]
- Ruot, B.; Plassais, A.; Olive, F.; Guillot, L.; Bonafous, L. TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol. Energy 2009, 83, 1794–1801. [Google Scholar] [CrossRef]
- Taurino, R.; Barbieri, L.; Bondioli, F. Surface properties of new green building material after TiO2–SiO2 coatings deposition. Ceram. Int. 2016, 42, 4866–4874. [Google Scholar] [CrossRef]
- Fediuk, R.; Yushin, A. Composite binders for concrete with reduced permeability. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 116. [Google Scholar]
- Kozhuhova, N.; Strokova, V.; Kozhuhova, M.; Zhernovskiy, I. Structure Formation in Alkali Activated Aluminosilicate Binding Systems Using Natural Raw Materials with Different Crystallinity Degree. Constr. Mater. Prod. 2020, 1, 38–43. [Google Scholar] [CrossRef]
- Lundgren, H.P.; Binkley, C.H. Application of rhodamine-B to interaction studies in proteins and simple model systems. J. Polym. Sci. 1954, 14, 139–158. [Google Scholar] [CrossRef]
- Santos, M.C.; Seabra, A.B.; Pelegrino, M.T.; Haddad, P.S. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery. Appl. Surf. Sci. 2016, 367, 26–35. [Google Scholar] [CrossRef]
- MacWan, D.P.; Dave, P.N.; Chaturvedi, S. A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci. 2011, 46, 3669–3686. [Google Scholar] [CrossRef]
- Cámara, R.M.; Portela, R.; Gutiérrez-Martín, F.; Sánchez, B. Photocatalytic activity of TiO2 films prepared by surfactant-mediated sol-gel methods over commercial polymer substrates. Chem. Eng. J. 2016, 283, 535–543. [Google Scholar] [CrossRef]
- Al-Taweel, S.S.; Saud, H.R. New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method. J. Chem. Pharm. Res. 2016, 8, 620–626. [Google Scholar]
- Davis, R.J.; Liu, Z. Titania-Silica: A Model Binary Oxide Catalyst System. Chem. Mater. 1997, 9, 2311–2324. [Google Scholar] [CrossRef]
- Iwasita, T.; Nart, F.C. In situ infrared spectroscopy at electrochemical interfaces. Prog. Surf. Sci. 1997, 55, 271–340. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Murashkevich, A.N.; Lavitskaya, A.S.; Barannikova, T.I.; Zharskii, I.M. Infrared absorption spectra and structure of TiO2-SiO2 composites. J. Appl. Spectrosc. 2008, 75, 730. [Google Scholar] [CrossRef]
Silica Material | |||
---|---|---|---|
Content of Oxides, wt. % | Diatomite | Gaize | Microsilica |
SiO2 | 86.81 | 73.46 | 93.09 |
Al2O3 | 5.91 | 13.26 | 0.43 |
Fe2O3 | 2.67 | 4.32 | 4.00 |
MgO + CaO | 2.76 | 6.01 | 0.78 |
K2O + Na2O | 1.46 | 1.90 | 0.54 |
SO3 | 0.01 | 0.09 | 0.07 |
TiO2 | 0.28 | 0.67 | 0.01 |
P2O5 | 0.04 | 0.06 | 0.07 |
Mineral content | |||
X-ray amorphous phase, % | 42.90 | 32.42 | 96.7 |
Specific Surface Area, m2/kg | Initial Silica Materials | ||
---|---|---|---|
Diatomite | Gaize | Microsilica | |
by gas permeability method | 1134 | 2546 | 4497 |
by the method of low-temperature nitrogen porosimetry | 70,800 | 86,800 | 27,700 |
Test Material | Degradation of Rhodamine B, % | ||
---|---|---|---|
UV Exposure Time, Hours | Daylight | ||
4 | 26 | 5 Days | |
AEROXIDE TiO2 P25 | 28 | 89 | 99 |
TiO2 | 27 | 91 | 99 |
PCMdiatomite | 25 | 86 | 94 |
PCMgaize | 3 | 57 | 93 |
PCMmicrosilica | 23 | 85 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strokova, V.; Gubareva, E.; Ogurtsova, Y.; Fediuk, R.; Zhao, P.; Vatin, N.; Vasilev, Y. Obtaining and Properties of a Photocatalytic Composite Material of the “SiO2–TiO2” System Based on Various Types of Silica Raw Materials. Nanomaterials 2021, 11, 866. https://doi.org/10.3390/nano11040866
Strokova V, Gubareva E, Ogurtsova Y, Fediuk R, Zhao P, Vatin N, Vasilev Y. Obtaining and Properties of a Photocatalytic Composite Material of the “SiO2–TiO2” System Based on Various Types of Silica Raw Materials. Nanomaterials. 2021; 11(4):866. https://doi.org/10.3390/nano11040866
Chicago/Turabian StyleStrokova, Valeria, Ekaterina Gubareva, Yulia Ogurtsova, Roman Fediuk, Piqi Zhao, Nikolai Vatin, and Yuriy Vasilev. 2021. "Obtaining and Properties of a Photocatalytic Composite Material of the “SiO2–TiO2” System Based on Various Types of Silica Raw Materials" Nanomaterials 11, no. 4: 866. https://doi.org/10.3390/nano11040866
APA StyleStrokova, V., Gubareva, E., Ogurtsova, Y., Fediuk, R., Zhao, P., Vatin, N., & Vasilev, Y. (2021). Obtaining and Properties of a Photocatalytic Composite Material of the “SiO2–TiO2” System Based on Various Types of Silica Raw Materials. Nanomaterials, 11(4), 866. https://doi.org/10.3390/nano11040866