Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copper Nanoparticles’ Green Synthesis
2.2. Parasite and Cell Culture
2.3. In Vitro Antiamastigote Effects
2.4. Evaluating Inhibition of Infection in Macrophage Cells
2.5. Determining the Nitric Oxide (NO) Production
2.6. Cytotoxic Effects of CuNPs on J774-A1 Cells
2.7. In Vivo Experiments
2.7.1. Ethical Statement
2.7.2. Inducing Cutaneous Leishmaniasis in BALB/c Mice
2.7.3. Treating Infected Mice
2.8. Statistical Analysis
3. Results
3.1. Characterization of Green Synthesized Cu NPs
3.2. In Vitro Antiamastigote Effects
3.3. Inhibiting Infection in Macrophage Cells
3.4. Nitric Oxide Production
3.5. Cytotoxic Effects of CuNPs on J774-A1 Cells
3.6. Effect of CuNPs on the Induced CL in BALB/c Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, N.C. Cutaneous leishmaniasis: Clinical dermatology—Review article. Clin. Exp. Dermatol. Clin. Dermatol. 2000, 25, 363–370. [Google Scholar] [CrossRef] [PubMed]
- WHO; Leishmaniases, C. Control of the Leishmaniases: Report of a Meeting of the WHO Expert Commitee on the Control of Leish-maniases, 22–26 March 2010; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Monzote, L. Current treatment of leishmaniasis: A review. Open Antimicrob. Agents J. 2009, 1, 9–19. [Google Scholar]
- Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011, 118, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.O.; Coutinho, C.E.R.; Madeira, M.F.; Bottino, C.G.; Vieira, R.T.; Nascimento, S.B.; Bernardino, A.; Bourguignon, S.C.; Corte-Real, S.; Pinho, R.T.; et al. Leishmaniasis treatment—A challenge that remains: A review. Parasitol. Res. 2008, 103, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Ingle, A.P.; Gaikwad, S.; Gupta, I.; Gade, A.; Silvério da Silva, S. Nanotechnology based anti-infectives to fight microbial intru-sions. J. Appl. Microbiol. 2016, 120, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815. [Google Scholar] [CrossRef]
- Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nano-technology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017, 12, 2957. [Google Scholar] [CrossRef] [Green Version]
- Ingle, A.P.; Duran, N.; Rai, M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl. Microbiol. Biotechnol. 2014, 98, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Swaminathan, S.; Hyder, K.A.; Christophel, E.-M.; Pendse, R.N.; Sreenivas, A.N.; Laksono, S.J.; Srivastava, R.; Nair, G.B.; Aditama, T.Y.; et al. Drug resistance in malaria, tuberculosis, and HIV in South East Asia: Biology, programme, and policy considerations. BMJ 2017, 358, j3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination therapy for visceral leishmaniasis. Lancet Infect. Dis. 2010, 10, 184–194. [Google Scholar] [CrossRef]
- Ezzatkhah, F.; Khalaf, A.K.; Mahmoudvand, H. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Biomed. Pharmacother. 2021, 136, 111257. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, M.; Nosratabadi, S.J.; Derakhshanfar, A.; Sharifi, I. Antileishmanial activity of Peganum harmala extract on the in vitro growth of Leishmania major promastigotes in comparison to a trivalent antimony drug. Veterinarski Arhiv. 2007, 77, 365–375. [Google Scholar]
- Mahmoudvand, H.; Kheirandish, F.; Mirbadie, S.R.; Kayedi, M.H.; Riabi, T.R.; Ghasemi, A.A.; Bamorovat, M.; Sharifi, I. The potential use of methotrexate in the treatment of cutaneous leishmaniasis: In vitro assays against sensitive and meglumine antimoniate-resistant strains of Leishmania tropica. Iran. J. Parasitol. 2017, 12, 339. [Google Scholar]
- Mostafavi, M.; Sharifi, I.; Farajzadeh, S.; Khazaeli, P.; Sharifi, H.; Pourseyedi, E.; Kakooei, S.; Bamorovat, M.; Keyhani, A.; Parizi, M.H.; et al. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmani-cidal effects. Biomed. Pharmacother. 2019, 116, 108942. [Google Scholar] [CrossRef]
- Ezatpour, B.; Saedi Dezaki, E.; Mahmoudvand, H.; Azadpour, M.; Ezzatkhah, F. In vitro and in vivo antileishmanial effects of Pistacia khinjuk against Leishmania tropica and Leishmania major. Evid. Based Complement. Altern. Med. 2015, 2015, 149707. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Patil, S.; Mullani, S.; Delekar, S. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C 2019, 97, 954–965. [Google Scholar] [CrossRef]
- Alizadeh, S.; Seyedalipour, B.; Shafieyan, S.; Kheime, A.; Mohammadi, P.; Aghdami, N. Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochem. Biophys. Res. Commun. 2019, 517, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Narayanan, K.; Thakar, M.B.; Jagani, H.V.; Rao, J.V. Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol. 2014, 8, 230–237. [Google Scholar] [CrossRef]
- Malekifard, F.; Tavassoli, M.; Vaziri, K. In Vitro Assessment Antiparasitic Effect of Selenium and Copper Nanoparticles on Giardia deodenalis Cyst. Iran. J. Parasitol. 2020, 15, 411–417. [Google Scholar] [CrossRef]
- Saad, A.H.A.; Soliman, M.I.; Azzam, A.M. Antiparasitic Activity of Silver and Copper Oxide Nanoparticles against Entamoeba Histolytica and Cryptosporidium Parvum Cysts. J. Egypt. Soc. Parasitol. 2015, 45, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Al-Hakkani, M.F. Biogenic copper nanoparticles and their applications: A review. SN Appl. Sci. 2020, 2, 505. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, S.; Elmi, A.; Nezhadi, S.H. Copper Nanoparticles as Antibacterial Agents. J. Mol. Pharm. Org. Process. Res. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett. 2014, 115, 13–17. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Horta, M.F.; Mendes, B.P.; Roma, E.H.; Noronha, F.S.M.; Macêdo, J.P.; Oliveira, L.S.; Duarte, M.M.; Vieira, L.Q. Reactive Oxygen Species and Nitric Oxide in Cutaneous Leishmaniasis. J. Parasitol. Res. 2012, 2012, 203818. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.R.; Kanchi, S.; Naidoo, E. In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach. J. Photochem. Photobiol. B Biol. 2016, 161, 375–382. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Śliwiński, J.; Kamaszewski, M.; Sysa, P.; Chojnacki, M. Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environ. Sci. Pollut. Res. 2018, 25, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Khatami, M.; Ebrahimi, K.; Galehdar, N.; Moradi, M.N.; MoayyedKazemi, A. Green Synthesis and Characterization of Copper Nanoparticles and Their Effects on Liver Function and Hematological Parameters in Mice. Turk. J. Pharm. Sci. 2020, 17, 412–416. [Google Scholar] [CrossRef]
- Mahmoudvand, H.; Khaksarian, M.; Ebrahimi, K.; Shiravand, S.; Jahanbakhsh, S.; Niazi, M.; Nadri, S. Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann. Med. Surg. 2020, 51, 31–36. [Google Scholar] [CrossRef]
Tested Material | IC50 (µg/mL) for L. major Amastigote | CC50 (µg/mL) of the J774-A1 Cells | SI |
---|---|---|---|
CuNPs | 116.8 ± 3.05 | 1325.4 ± 8.15 | 11.34 |
MA | 52.6 ± 2.15 | 1125.6 ± 11.60 | 21.39 |
CuNPs + MA | 21.3 ± 0.42 | 396.3 ± 8.51 | 18.60 |
Promastigotes | Percentage of Infected Macrophages | Infectiveness Reduction (%) |
---|---|---|
Nontreated | 81.3 ± 3.15 | - |
CuNPs (10 µg/mL) | 39.3 ± 2.33 | 42.0 |
CuNPs (20 µg/mL) | 21.4 ± 1.51 | 59.9 |
CuNPs (10 µg/mL) + MA (10 µg/mL) | 9.3 ± 0.61 | 88.6 |
CuNPs (20 µg/mL) + MA (10 µg/mL) | 5.6 ± 0.15 | 93.1 |
Concentration (µg/mL) | Production of Nitric Oxide (nM) |
---|---|
10 | 8.3 ± 0.55 |
20 | 9.6 ± 0.74 |
30 | 17 ± 1.55 |
Nontreated | 10.6 ± 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albalawi, A.E.; Abdel-Shafy, S.; Khudair Khalaf, A.; Alanazi, A.D.; Baharvand, P.; Ebrahimi, K.; Mahmoudvand, H. Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis. Nanomaterials 2021, 11, 891. https://doi.org/10.3390/nano11040891
Albalawi AE, Abdel-Shafy S, Khudair Khalaf A, Alanazi AD, Baharvand P, Ebrahimi K, Mahmoudvand H. Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis. Nanomaterials. 2021; 11(4):891. https://doi.org/10.3390/nano11040891
Chicago/Turabian StyleAlbalawi, Aishah E., Sobhy Abdel-Shafy, Amal Khudair Khalaf, Abdullah D. Alanazi, Parastoo Baharvand, Katrin Ebrahimi, and Hossein Mahmoudvand. 2021. "Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis" Nanomaterials 11, no. 4: 891. https://doi.org/10.3390/nano11040891
APA StyleAlbalawi, A. E., Abdel-Shafy, S., Khudair Khalaf, A., Alanazi, A. D., Baharvand, P., Ebrahimi, K., & Mahmoudvand, H. (2021). Therapeutic Potential of Green Synthesized Copper Nanoparticles Alone or Combined with Meglumine Antimoniate (Glucantime®) in Cutaneous Leishmaniasis. Nanomaterials, 11(4), 891. https://doi.org/10.3390/nano11040891