Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications
Abstract
:1. Introduction
2. Recent Advancements
3. Temperature-Dependent Classification of Low-Toxic Earth-Abundant Thermoelectric Materials
3.1. Low-Temperature Thermoelectric Materials
3.2. Intermediate Temperature Thermoelectric Materials
3.2.1. Chalcogenides (Sulfur-Based)
Sr.no | Material | Operating Temperature (K) | Synthesis Technique | σ * (Scm−1) | k * (Wm−1K−1) | Seebeck Coefficient (µVK−1) | PF * (S2σ/µWm−1K−2) | ZT *max | Year/Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 20%Zn-Doped Cu2SnS3 | 723 | Spark plasma Sintering | ~600 | 0.9 ± 0.4 | ~100 | 840 | 0.58 | 2016 [36] |
2 | Na0.05Cu9S5 | 773 | Mechanical Alloying Spark Plasma Sintering | ~850 | 0.7 | ~110 | 1050 | 1.1 | 2016 [31] |
3 | Cu2S with 2%wt In2S3 | 850 | Spark Plasma Sintering | ~500 | 0.95 | 200 | 1361 | 1.23 | 2016 [27] |
4 | SnxCu1.8-xS at x = 0.01 | 773 | Planetary ball mining Spark Plasma Sintering | 19 | 0.4 | 250 | ~500 | 0.81 | 2017 [37] |
5 | Cu1.98S1/3Se1/3Te1/3 | 1000 | Spark Plasma Sintering | N/A | ~0.49 | 250 | 1120 | 1.9 | 2017 [32] |
6 | Cu2S NS doped with Cu ion | 300–360 | Simple room temperature chemical route | N/A | N/A | 415 | ~400 | N/A | 2017 [25] |
7 | Cu2−ySe0.5S0.5 | 1000 | Spark Plasma Sintering | N/A | 0.32 | 370 | 1500 | 2.3 | 2017 [33] |
8 | αCu2S (1–7 µm) βCu2S (5–20 nm) | 573 773 | Hydrothermal synthesis Wet chemistry method | ~100 ~1000 | ~0.2 ~1.23 | ~420 101 | 196 985 | 0.38 0.62 | 2017 [24] |
9 | Cu2.14Co0.8Mn0.05SnS4 (Cu/Mn co-doping) | 800 | Mechanical Alloying Hot Pressed Sintering | N/A | ~1.0 | ~200 | 1026 | 0.8 | 2017 [40] |
10 | Cu2S0.5Te0.5 | - | Spark Plasma Sintering | N/A | <0.4 | N/A | N/A | 1.9 | 2017 [34] |
11 | Cu1.8S with 3% wt Bi2S3@Bi core-shell nanorods | 723 | Mechanical Alloying Spark Plasma Sintering | ~1500 | 0.91 | 85 | ~990 | 0.77 | 2017 [28] |
12 | Polycrystalline p-type Cu1.8S with 1.0 wt% SiC NP * | 773 | Mechanical Alloying Spark Plasma Sintering | ~900 | 0.7 | 115 | ~900 | 0.87 | 2017 [29] |
13 | Cu1.0Fe0.97S2.12(S1.96)(Fe−1-S) n-type | 623 | Hot injection Sintering | 850 | 0.5 | 238 | N/A | 0.13 | 2017 [41] |
14 | Cu5FeS4 Bornite NP | 320 | Mechanical Alloying Annealing | N/A | 0.46 | 130 | 250 | 0.28 | 2018 [42] |
15 | Cu2−xS with 0.75%wt graphene | 873 | Mechanical Alloying Spark Plasma Sintering | ~500 | 0.67 | ~165 | 1197 | 1.56 | 2018 [22] |
16 | Cu2Sn1−xZnxS3 NP * | 670 | Chemical Synthesis Pulse electric Current Sintering Method | 95.2 | 0.45 | 218.2 | ~450 | 0.64 | 2018 [43] |
17 | Cu1.8S+ 1wt%WSe2 NP * | 773 | Mechanical Alloying Spark Plasma Sintering | ~800 | 0.68 | 110 | ~900 | 1.22 | 2018 [30] |
18 | Cu2S with carbon nanotube | 700–800 | One-step ultrasonic reaction method | ~50 | <0.4 | 388 | ~500 | 0.74 | 2019 [23] |
19 | 3%wt In2S3 doped Cu1.8S | 773 | Spark Plasma Sintering | ~600 | 0.65 | 110 | ~1100 | ~1.4 | 2019 [26] |
20 | Cu1.8Sb0.02Sn0.03S | 773 | Mechanical Alloying Spark Plasma Sintering | N/A | ~0.6 | 175 | 975 | ~1.2 | 2019 [38] |
21 | Cu1.8S + 2 wt% Na2S | 773 | Mechanical Alloying Spark Plasma Sintering | ~900 | ~0.9 | 106 | ~1048 | 0.78 | 2020 [44] |
22 | Cu26V2Sn6S32 NP * | 673 | Mechanical Alloying Plasma sintering | N/A | 0.27 | 87 | 900 | ~0.7 | 2020 [45] |
23 | Nix Doped Cu1.9S at x = 0.02 | 773 | Planetary Ball mining Spark Plasma Sintering | ~500 | 1.08 | 149 | 1310 | 0.9 | 2020 [46] |
24 | Cu2SnS3 at 500 thermal temp | 700 | High energy reactive ball mining | N/A | 0.26 | 350 | 110 | 0.30 | 2020 [47] |
25 | Cu1.8S0.875Te0.125 | 623 | Mechanical Alloying Room temperature high-pressure sintering | ~1000 | 0.82 | 90 | 630 | 0.352 | 2020 [48] |
3.2.2. Skutterudites
3.2.3. Half-Heusler
3.3. High-Temperature Thermoelectric Materials
3.3.1. Nanocrystalline Silicon-Based TE Materials
3.3.2. Manganese Silicide Alloys
- (1)
- The element rhenium (Re) is a rare-earth material, thereby increasing the cost.
- (2)
- Low chemical stability and can be enhanced by silica-based glass-ceramic coating.
- (3)
- Low ZT value and can be boosted for p-type HMS by employing various strategies of further reducing the thermal conductivity and highlighting the electrical properties.
- (4)
- Power conversion efficiency can be improved by the proper assembling of modules and better design.
3.3.3. Magnesium Silicide (Mg-Si) Alloys
3.3.4. Chromium Disilicide (CrSi2)
3.3.5. Other Silicides
3.3.6. Chalcogenides (Oxides)
3.3.7. Low Toxic Zintl Compounds
4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beekman, M.; Morelli, D.T.; Nolas, G.S. Better thermoelectrics through glass-like crystals. Nat. Mater. 2015, 14, 1182–1185. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Sun, H.; Yang, D. Sonochemical synthesis of amorphous long silver sulfide nanowires. Mater. Lett. 2007, 61, 235–238. [Google Scholar] [CrossRef]
- Wan, C.; Wang, Y.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Nanoscale stacking faults induced low thermal conductivity in thermoelectric layered metal sulfides. Appl. Phys. Lett. 2012, 100, 101913. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.-Y.; Chen, J.; Li, D.; Zhou, J.; Liu, Z.; Chisholm, M.F.; Pantelides, S.T.; Loh, K.P. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. Sci. Adv. 2018, 4, eaap9096. [Google Scholar] [CrossRef] [Green Version]
- Mahan, G.D. Figure of merit for thermoelectrics. J. Appl. Phys. 1989, 65, 1578–1583. [Google Scholar] [CrossRef]
- Dong, X.; Xiong, S.; Luo, B.; Ge, R.; Li, Z.; Li, J.; Zhou, Y. Flexible and Transparent Organic–Inorganic Hybrid Thermoelectric Modules. ACS Appl. Mater. Interfaces 2018, 10, 26687–26693. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Ishibe, T.; Tomeda, A.; Watanabe, K.; Kikkawa, J.; Fujita, T.; Nakamura, Y. Embedded-ZnO nanowire structure for high-performance transparent thermoelectric materials. J. Electron. Mater. 2017, 46, 3020–3024. [Google Scholar] [CrossRef]
- Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H.M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y.Q.; Grundmann, M. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mulla, R.; Rabinal, M.K. Defect-Controlled Copper Iodide: A Promising and Ecofriendly Thermoelectric Material. Energy Technol. 2018, 6, 1178–1185. [Google Scholar] [CrossRef]
- Faustino, B.M.M.; Gomes, D.; Faria, J.; Juntunen, T.; Gaspar, G.; Bianchi, C.; Almeida, A.; Marques, A.; Tittonen, I.; Ferreira, I. CuI p-type thin films for highly transparent thermoelectric p-n modules. Sci. Rep. 2018, 8, 6867. [Google Scholar] [CrossRef] [Green Version]
- Coroa, J.; Faustino, B.M.M.; Marques, A.; Bianchi, C.; Koskinen, T.; Juntunen, T.; Tittonen, I.; Ferreira, I. Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate. RSC Adv. 2019, 9, 35384–35391. [Google Scholar] [CrossRef] [Green Version]
- Salah, N.; Abusorrah, A.M.; Salah, Y.N.; Almasoudi, M.; Baghdadi, N.; AlShahri, A.; Koumoto, K. Effective dopants for CuI single nanocrystals as a promising room temperature thermoelectric material. Ceram. Int. 2020, 46, 27244–27253. [Google Scholar] [CrossRef]
- Powell, A.V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. J. Appl. Phys. 2019, 126, 100901. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.-R.; Qin, Y.; Deng, T.; Song, Q.; Jiang, B.; Liu, R.; Qiu, P.; Shi, X.; Chen, L. Copper chalcogenide thermoelectric materials. Sci. China Mater. 2019, 62, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Mikuła, A.; Koleżyński, A. First principles studies of Fe-doped Cu2S—Theoretical investigation. Solid State Ionics 2019, 334, 36–42. [Google Scholar] [CrossRef]
- Bohra, A.; Bhatt, R.; Bhattacharya, S.; Basu, R.; Ahmad, S.; Singh, A.; Aswal, D.K.; Gupta, S.K. Study of thermal stability of Cu2Se thermoelectric material. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1731, p. 110010. [Google Scholar] [CrossRef]
- Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G.K.H. Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials? Adv. Energy Mater. 2014, 4, 1301581. [Google Scholar] [CrossRef]
- Brown, D.R.; Day, T.; Caillat, T.; Snyder, G.J. Chemical Stability of (Ag,Cu)2Se: A Historical Overview. J. Electron. Mater. 2013, 42, 2014–2019. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Fei, F.Y.; Wang, J.; Cheng, Z.; Dou, S.; Wang, J.; Snyder, G.J. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J. Mater. Chem. A 2015, 3, 9432–9437. [Google Scholar] [CrossRef]
- Mikuła, A.; Nieroda, P.; Mars, K.; Dąbrowa, J.; Koleżyński, A. Structural, thermoelectric and stability studies of Fe-doped copper sulfide. Solid State Ion. 2020, 350, 115322. [Google Scholar] [CrossRef]
- Tang, H.; Sun, F.-H.; Dong, J.-F.; Zhuang, H.-L.; Pan, Y.; Li, J.-F. Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy 2018, 49, 267–273. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Niu, Y.; Jiang, J.; Wang, C. Thermoelectric properties of multi-walled carbon nanotube-embedded Cu2S thermoelectric materials. J. Mater. Sci. Mater. Electron. 2019, 30, 5177–5184. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Ge, Z.-H.; Feng, J. Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. Crystals 2017, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Mulla, R.; Rabinal, M. Ambient growth of highly oriented Cu2S dendrites of superior thermoelectric behaviour. Appl. Surf. Sci. 2017, 397, 70–76. [Google Scholar] [CrossRef]
- Ge, Z.-H.; Chong, X.; Feng, D.; Zhang, Y.-X.; Qiu, Y.; Xie, L.; Guan, P.-W.; Feng, J.; He, J. Achieving an excellent thermoelectric performance in nanostructured copper sulfide bulk via a fast doping strategy. Mater. Today Phys. 2019, 8, 71–77. [Google Scholar] [CrossRef]
- Meng, Q.-L.; Kong, S.; Huang, Z.; Zhu, Y.; Liu, H.-C.; Lu, X.; Jiang, P.; Bao, X. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J. Mater. Chem. A 2016, 4, 12624–12629. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Ge, Z.-H.; Feng, J. Enhanced thermoelectric properties of Cu1.8S via introducing Bi2S3 and Bi2S3@Bi core-shell nanorods. J. Alloys Compd. 2017, 727, 1076–1082. [Google Scholar] [CrossRef]
- Qin, P.; Ge, Z.-H.; Feng, J. Enhanced thermoelectric properties of SiC nanoparticle dispersed Cu1.8S bulk materials. J. Alloys Compd. 2017, 696, 782–787. [Google Scholar] [CrossRef]
- Qin, P.; Ge, Z.-H.; Chen, Y.-X.; Chong, X.; Feng, J.; He, J. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles. Nanotechnology 2018, 29, 345402. [Google Scholar] [CrossRef]
- Ge, Z.-H.; Liu, X.; Feng, D.; Lin, J.; He, J. High-Performance Thermoelectricity in Nanostructured Earth-Abundant Copper Sulfides Bulk Materials. Adv. Energy Mater. 2016, 6, 1600607. [Google Scholar] [CrossRef]
- Zhao, K.; Zhu, C.; Qiu, P.; Blichfeld, A.B.; Eikeland, E.; Ren, D.; Iversen, B.B.; Xu, F.; Shi, X.; Chen, L. High thermoelectric performance and low thermal conductivity in Cu2−yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy 2017, 42, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Qiu, P.; Song, Q.; Blichfeld, A.B.; Eikeland, E.; Ren, D.; Ge, B.; Iversen, B.B.; Shi, X.; Chen, L. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater. Today Phys. 2017, 1, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; He, Y.; Lu, P.; Fu, Z.; Xu, F.; Yao, H.; Zhang, L.; Shi, X.; Chen, L. Multiple nanostructures in high performance Cu2S0.5Te0.5 thermoelectric materials. Ceram. Int. 2017, 43, 7866–7869. [Google Scholar] [CrossRef]
- Shimose, H.; Singh, M.; Ahuja, D.; Zhao, W.; Shan, S.; Nishino, S.; Miyata, M.; Higashimine, K.; Mott, D.M.; Koyano, M.; et al. Copper Sulfide–Zinc Sulfide Janus Nanoparticles and Their Seebeck Characteristics for Sustainable Thermoelectric Materials. J. Phys. Chem. C 2016, 120, 5869–5875. [Google Scholar] [CrossRef]
- Shen, Y.; Li, C.; Huang, R.; Tian, R.; Ye, Y.; Pan, L.; Koumoto, K.; Zhang, R.; Wan, C.; Wang, Y. Eco-friendly p-type Cu2SnS3 thermoelectric material: Crystal structure and transport properties. Sci. Rep. 2016, 6, 32501. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Ge, Z.-H.; Feng, J. Effects of second phases on thermoelectric properties in copper sulfides with Sn addition. J. Mater. Res. 2017, 32, 3029–3037. [Google Scholar] [CrossRef]
- Tang, H.; Zhuang, H.-L.; Cai, B.; Asfandiyar, A.; Dong, J.; Sun, F.-H.; Li, J.-F. Enhancing the thermoelectric performance of Cu1.8S by Sb/Sn co-doping and incorporating multiscale defects to scatter heat-carrying phonons. J. Mater. Chem. C 2019, 7, 4026–4031. [Google Scholar] [CrossRef]
- He, Y.; Day, T.; Zhang, T.; Liu, H.; Shi, X.; Chen, L.; Snyder, G.J. High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide. Adv. Mater. 2014, 26, 3974–3978. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.; Jiang, Q.; Zhou, Z.; Li, X.; Xin, J.; Basit, A.; Ren, Y.; He, X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy 2017, 36, 156–165. [Google Scholar] [CrossRef]
- Gabka, G.; Zybała, R.; Bujak, P.; Ostrowski, A.; Chmielewski, M.; Lisowski, W.; Sobczak, J.W.; Pron, A. Facile Gram-Scale Synthesis of the First n-Type CuFeS2 Nanocrystals for Thermoelectric Applications. Eur. J. Inorg. Chem. 2017, 2017, 3150–3153. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shokuhfar, A.; Cabot, A.; Zolriasatein, A. Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technol. 2018, 333, 160–166. [Google Scholar] [CrossRef]
- Zhou, W.; Dwivedi, P.; Shijimaya, C.; Ito, M.; Higashimine, K.; Nakada, T.; Takahashi, M.; Mott, D.; Miyata, M.; Ohta, M.; et al. Enhancement of the Thermoelectric Figure of Merit in Blended Cu2Sn1–xZnxS3 Nanobulk Materials. ACS Appl. Nano Mater. 2018, 1, 4819–4827. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Feng, J.; Ge, Z.-H. High thermoelectric performance realized in porous Cu1.8S based composites by Na2S addition. Mater. Sci. Semicond. Process. 2020, 107, 104848. [Google Scholar] [CrossRef]
- Guélou, G.; Couder, C.; Bourhim, A.; Lebedev, O.I.; Daneu, N.; Appert, F.; Juraszek, J.; Lemoine, P.; Segreto, L.; Guilmeau, E. A scalable synthesis route for multiscale defect engineering in the sustainable thermoelectric quaternary sulfide Cu26V2Sn6S32. Acta Mater. 2020, 195, 229–239. [Google Scholar] [CrossRef]
- Shen, F.; Zheng, Y.; Miao, L.; Liu, C.; Gao, J.; Wang, X.; Liu, P.; Yoshida, K.; Cai, H. Boosting High Thermoelectric Performance of Ni-Doped Cu1.9S by Significantly Reducing Thermal Conductivity. ACS Appl. Mater. Interfaces 2020, 12, 8385–8391. [Google Scholar] [CrossRef] [PubMed]
- Lohani, K.; Isotta, E.; Ataollahi, N.; Fanciulli, C.; Chiappini, A.; Scardi, P. Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulphide (Cu2SnS3, CTS). J. Alloys Compd. 2020, 830, 154604. [Google Scholar] [CrossRef]
- Zhang, R.; Pei, J.; Han, Z.-J.; Wu, Y.; Zhao, Z.; Zhang, B.-P. Optimal performance of Cu1.8S1−xTex thermoelectric materials fabricated via high-pressure process at room temperature. J. Adv. Ceram. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Xu, B.; Feng, T.; Agne, M.T.; Tan, Q.; Li, Z.; Imasato, K.; Zhou, L.; Bahk, J.; Ruan, X.; Snyder, G.J.; et al. Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for High-Performance Thermoelectrics in Solution-Synthesized Nanostructured Bi13S18I2. Angew. Chem. 2018, 130, 2437–2442. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. Npj Flex. Electron. 2017, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.M.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, D.; Dong, J.F.; Qiu, Y.; Fu, L.; Feng, Y.; Hao, Y.; Wang, G.; Wang, J.; Liu, C.; et al. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals. J. Mater. Chem. A 2018, 6, 10048–10056. [Google Scholar] [CrossRef]
- Wu, H.; Lu, X.; Wang, G.; Peng, K.; Chi, H.; Zhang, B.; Chen, Y.; Li, C.; Yan, Y.; Guo, L.; et al. Sodium-Doped Tin Sulfide Single Crystal: A Nontoxic Earth-Abundant Material with High Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1800087. [Google Scholar] [CrossRef]
- He, W.; Wang, D.; Wu, H.; Xiao, Y.; Zhang, Y.; He, D.; Feng, Y.; Hao, Y.-J.; Dong, J.-F.; Chetty, R.; et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019, 365, 1418–1424. [Google Scholar] [CrossRef]
- Rull-Bravo, M.; Moure, A.; Fernández, J.; Martín-González, M. Skutterudites as thermoelectric materials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- Rogl, G.; Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 2017, 4, 50–57. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhu, J.-L.; Tong, X.; Niu, S.; Zhao, W.-Y. A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 2020, 9, 647–673. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Gao, H.; Lu, Q.; Lin, T.; He, P.; Geng, H. Characterization of multiple-filled skutterudites with high thermoelectric performance. J. Alloys Compd. 2020, 814, 152272. [Google Scholar] [CrossRef]
- Casper, F.; Graf, T.; Chadov, S.; Balke, B.; Felser, C. Half-Heusler compounds: Novel materials for energy and spintronic applications. Semicond. Sci. Technol. 2012, 27, 063001. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Q.; Yuan, B.; Lai, X.; Yan, X.; Ren, Z. Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 2016, 76, 107–112. [Google Scholar] [CrossRef]
- Rogl, G.; Sauerschnig, P.; Rykavets, Z.; Romaka, V.; Heinrich, P.; Hinterleitner, B.; Grytsiv, A.; Bauer, E.; Rogl, P. (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT. Acta Mater. 2017, 131, 336–348. [Google Scholar] [CrossRef]
- Gürth, M.; Rogl, G.; Romaka, V.; Grytsiv, A.; Bauer, E.; Rogl, P. Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0 ≤ x ≤ 1; 0 ≤ y ≤ 1). Acta Mater. 2016, 104, 210–222. [Google Scholar] [CrossRef]
- Poon, S.J. Recent Advances in Thermoelectric Performance of Half-Heusler Compounds. Metals 2018, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- Schierning, G.; Chavez, R.; Schmechel, R.; Balke, B.; Rogl, G.; Rogl, P. Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: A review of selected materials and basic considerations of module design. Transl. Mater. Res. 2015, 2, 025001. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal conductivity of silicon and ger from 3 K to the melting point. Phys. Rev. 1964, 134, A1058. [Google Scholar] [CrossRef]
- Lang, W.; Drost, A.; Steiner, P.; Sandmaier, H. The Thermal Conductivity of Porous Silicon. In Proceedings of the MRS Proceedings; Springer Science and Business Media LLC: Berlin, Germany, 1994; Volume 358. [Google Scholar]
- Claudio, T.; Stein, N.; Stroppa, D.G.; Klobes, B.; Koza, M.M.; Kudejova, P.; Petermann, N.; Wiggers, H.; Schierning, G.; Hermann, R.P. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties. Phys. Chem. Chem. Phys. 2014, 16, 25701–25709. [Google Scholar] [CrossRef] [Green Version]
- Narducci, D.; Frabboni, S.; Zianni, X. Silicon de novo: Energy filtering and enhanced thermoelectric performances of nanocrystalline silicon and silicon alloys. J. Mater. Chem. C 2015, 3, 12176–12185. [Google Scholar] [CrossRef]
- Loureiro, J.; Mateus, T.; Filonovich, S.; Ferreira, M.; Figueira, J.; Rodrigues, A.; Donovan, B.F.; Hopkins, P.E.; Ferreira, I. Improved thermoelectric properties of nanocrystalline hydrogenated silicon thin films by post-deposition thermal annealing. Thin Solid Films 2017, 642, 276–280. [Google Scholar] [CrossRef]
- Schierning, G. Silicon nanostructures for thermoelectric devices: A review of the current state of the art. Phys. Status Solidi A 2014, 211, 1235–1249. [Google Scholar] [CrossRef]
- Boukai, A.I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard, W.A., III; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef]
- Shiomi, J. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics. APL Mater. 2016, 4, 104504. [Google Scholar] [CrossRef] [Green Version]
- De Sousa Oliveira, L.R.; Vargiamidis, V.; Neophytou, N. Modeling Thermoelectric Performance in Nanoporous Nanocrystalline Silicon. IEEE Trans. Nanotechnol. 2019, 18, 896–903. [Google Scholar] [CrossRef]
- Zianni, X.; Narducci, D. Modelling the simultaneous increase of the conductivity and the Seebeck coefficient in highly B-doped nc-Si. Mater. Today Proc. 2019, 8, 706–712. [Google Scholar] [CrossRef]
- Zianni, X.; Narducci, D. Synergy between defects, charge neutrality and energy filtering in hyper-doped nanocrystalline materials for high thermoelectric efficiency. Nanoscale 2019, 11, 7667–7673. [Google Scholar] [CrossRef] [Green Version]
- Perumal, S.; Gorsse, S.; Ail, U.; Prakasam, M.; Rajasekar, P.; Umarji, A. Enhanced thermoelectric figure of merit in nano-structured Si dispersed higher manganese silicide. Mater. Sci. Semicond. Process. 2019, 104, 104649. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Murugasami, R.; Kumaran, S. Spark plasma assisted in-situ phase evolution and densification of nano-crystalline magnesium silicide—Silicon germanium thermo-electric composite: Pulse current effects and densification mechanisms. Scr. Mater. 2018, 146, 344–348. [Google Scholar] [CrossRef]
- Kim, G.; Kim, H.-S.; Lee, H.S.; Kim, J.; Lee, K.H.; Roh, J.W.; Lee, W. Synchronized enhancement of thermoelectric properties of higher manganese silicide by introducing Fe and Co nanoparticles. Nano Energy 2020, 72, 104698. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.-F.; Sun, F.-H.; Hirono, S.; Li, J.-F. Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire. Chem. Mater. 2017, 29, 7378–7389. [Google Scholar] [CrossRef]
- Migas, D.; Shaposhnikov, V.; Filonov, A.; Borisenko, V.; Dorozhkin, N. Ab initio study of the band structures of different phases of higher manganese silicides. Phys. Rev. B 2008, 77, 075205. [Google Scholar] [CrossRef]
- Yamamoto, A.; Ghodke, S.; Miyazaki, H.; Inukai, M.; Nishino, Y.; Matsunami, M.; Takeuchi, T. Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides. Jpn. J. Appl. Phys. 2016, 55, 020301. [Google Scholar] [CrossRef]
- Ghodke, S.; Hiroishi, N.; Yamamoto, A.; Ikuta, H.; Matsunami, M.; Takeuchi, T. Enhanced Thermoelectric Properties of W-and Fe-Substituted MnSi γ. J. Electron. Mater. 2016, 45, 5279–5284. [Google Scholar] [CrossRef]
- Liu, W.-D.; Chen, Z.-G.; Zou, J. Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Adv. Energy Mater. 2018, 8, 1800056. [Google Scholar] [CrossRef]
- Santos, R.; Yamini, S.A.; Dou, S.X. Recent progress in magnesium-based thermoelectric materials. J. Mater. Chem. A 2018, 6, 3328–3341. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, V.K.; Fedorov, M.I.; Gurieva, E.A.; Eremin, I.S.; Konstantinov, P.P.; Samunin, A.Y.; Vedernikov, M.V. Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 2006, 74, 045207. [Google Scholar] [CrossRef]
- Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601. [Google Scholar] [CrossRef] [Green Version]
- Sankhla, A.; Patil, A.; Kamila, H.; Yasseri, M.; Farahi, N.; Mueller, E.; De Boor, J. Mechanical Alloying of Optimized Mg2(Si,Sn) Solid Solutions: Understanding Phase Evolution and Tuning Synthesis Parameters for Thermoelectric Applications. ACS Appl. Energy Mater. 2018, 1, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, T.; Umarji, A. Role of milling parameters and impurity on the thermoelectric properties of mechanically alloyed chromium silicide. J. Alloys Compd. 2008, 461, 292–297. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Kumaraswamidhas, L.; Dhar, A. Significant enhancement in thermoelectric performance of bulk CrSi2 employing quasi-binary solid solution CrSi2/MnSi1.73. Mater. Lett. 2020, 265, 127388. [Google Scholar] [CrossRef]
- Mikami, M.; Kinemuchi, Y. Microstructure and thermoelectric properties of WSi2-added CrSi2 composite. J. Alloys Compd. 2017, 690, 652–657. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Kumaraswamidhas, L.; Gahtori, B.; Bathula, S.; Muthiah, S.; Shyam, R.; Chauhan, N.S.; Bhardwaj, R.; Dhar, A. Enhancement in thermoelectric performance of bulk CrSi2 dispersed with nanostructured SiGe nanoinclusions. J. Alloys Compd. 2018, 765, 412–417. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Kumaraswamidhas, L.; Gahtori, B.; Muthaiah, S.; Bathula, S.; Shyam, R.; Dhar, A. Facile synthesis of earth-abundant and non-toxic p-type Si96B4/SiCp nanocomposites with enhanced thermoelectric performance. Mater. Sci. Semicond. Process. 2018, 75, 234–238. [Google Scholar] [CrossRef]
- Ren, G.; Lan, J.; Zeng, C.; Liu, Y.; Zhan, B.; Butt, S.; Lin, Y.-H.; Nan, C.-W. High Performance Oxides-Based Thermoelectric Materials. JOM 2015, 67, 211–221. [Google Scholar] [CrossRef]
- Zevalkink, A.; Toberer, E.S.; Zeier, W.G.; Flage-Larsen, E.; Snyder, G.J. Ca3AlSb3: An inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 2011, 4, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Thunis, G.; Rignanese, G.-M.; Hautier, G. Electronic Transport Properties of Thermoelectric Zintl Compounds Ca5Al2Sb6 and Ca3AlSb3: An ab Initio Study. Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2016. [Google Scholar]
- Toberer, E.S.; Zevalkink, A.; Crisosto, N.; Snyder, G.J. The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation. Adv. Funct. Mater. 2010, 20, 4375–4380. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Mamakhel, A.; Jørgensen, M.R.V.; Iversen, B.B. High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application. Chem. Mater. 2017, 29, 5371–5383. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Rajput, A.S.; Shukla, A.K.; Pulikkotil, J.J.; Srivastava, A.K.; Dhar, A.; Gupta, G.; Auluck, S.; Misra, D.K.; Budhani, R.C. Mg3Sb2-based Zintl compound: A non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Adv. 2013, 3, 8504–8516. [Google Scholar] [CrossRef]
- Shuai, J.; Wang, Y.; Kim, H.S.; Liu, Z.; Sun, J.; Chen, S.; Sui, J.; Ren, Z. Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2. Acta Mater. 2015, 93, 187–193. [Google Scholar] [CrossRef] [Green Version]
Sr.no | Material | Operating Temperature (K) | Synthesis Technique | σ * (Scm−1) | K * (Wm−1K−1) | Seebeck Coefficient (µVK−1) | PF * (S2σ/µWm−1K−2) | ZT *max | Year/ Reference |
---|---|---|---|---|---|---|---|---|---|
1 | p-type CuI | 300 | Sputtering | N/A | 0.55 | 237 | 375 | 0.21 | 2017 [9] |
2 | p-type CuI | 353 | Simple Synthesis Vacuum Annealing | N/A | N/A | 431 | 160 | N/A | 2018 [10] |
3 | p-type CuI n-type GZO | 300 | Sputtering Thermal evaporation Solid deposition Vapor method | 110 | N/A | 206 | 470 | 0.22 | 2018 [11] |
4 | p-type CuI n-type GZO | 373 | Resistive thermal evaporation | 110 142 | 0.48 2.17 | 206.0 −60 | 470 500 | 0.29 0.07 | 2019 [12] |
5 | CuI:Tb (0.05 mol%) NP * | 430 | Hydraulic pressing Vacuum annealing | ~500 | ~0.5 | ~700 | 350 | 0.28 | 2020 [13] |
Type of Thermoelectric Material | Max ZT | |
---|---|---|
n-type | ZnO-based | 0.54 at 1000 K |
SrTiO3-based | 0.37 at 973 K | |
In2O3-based | 0.7 at 1073 K | |
p-type | Ca3Co4O9-based | 0.4 at 975 K |
BiCuSeO-based | 1.4 at 923 K | |
NiO-based | 0.075 at 1000 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaldurgam, F.F.; Ahmad, Z.; Touati, F. Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications. Nanomaterials 2021, 11, 895. https://doi.org/10.3390/nano11040895
Jaldurgam FF, Ahmad Z, Touati F. Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications. Nanomaterials. 2021; 11(4):895. https://doi.org/10.3390/nano11040895
Chicago/Turabian StyleJaldurgam, Farheen F., Zubair Ahmad, and Farid Touati. 2021. "Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications" Nanomaterials 11, no. 4: 895. https://doi.org/10.3390/nano11040895
APA StyleJaldurgam, F. F., Ahmad, Z., & Touati, F. (2021). Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications. Nanomaterials, 11(4), 895. https://doi.org/10.3390/nano11040895