Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. TEM Characterization
2.3. Calculation of PXRD Diffraction Patterns
2.4. STEM Measurements Including the 4D-STEM/PNBD Method
2.4.1. SEM Microscope with Pixelated Detector
2.4.2. Principle of 4D-STEM/PNBD Method
3. Results
3.1. Results of 4D-STEM/PNBD Method
3.1.1. Au Nano-Islands
3.1.2. TbF3 Nanoparticles
3.1.3. NaYF4 Nanoparticles
3.2. STEMDIFF: Program Package for Convenient Processing of 4D-STEM/PNBD Data
3.3. Influence of Selected Parameters on the Quality of 4D-STEM/PNBD Results
3.3.1. Dataset size
3.3.2. Dataset Filtering
4. Discussion and Conclusions
4.1. Originality of 4D-STEM/PNBD Method
4.2. Current Limitations of the 4D-STEM/PNBD Method
4.3. Advantages and Future Perspective of the 4D-STEM/PNBD Method
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egerton, R.F. Physical Principles of Electron Microscopy. An Introduction to TEM, SEM, and AEM, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Holm, J.; Caplins, B.; Killgore, J. Obtaining diffraction patterns from annular dark-field STEM-in-SEM images: Towards a better understanding of image contrast. Ultramicroscopy 2020, 212, 112972. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, M.; Müller, E.; Klein, M.F.G.; Colsmann, A.; Lemmer, U.; Krzyzanek, V.; Reichelt, R.; Gerthsen, D. Low-energy electron scattering in carbon-based materials analyzed by scanning transmission electron microscopy and its application to sample thickness determination. J. Microsc. 2010, 243, 31–39. [Google Scholar] [CrossRef]
- Skoupy, R.; Nebesarova, J.; Slouf, M.; Krzyzanek, V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy 2019, 202, 44–50. [Google Scholar] [CrossRef]
- Ferroni, M.; Signoroni, A.; Sanzogni, A.; Masini, L.; Migliori, A.; Ortolani, L.; Pezza, A.; Morandi, V. Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Sci. Rep. 2016, 6, 33354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Muller, E.; Meffert, M.; Gerthsen, D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018, 24, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.D.; Caplins, B.W. STEM in SEM: Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure Analysis; ASM International: Novelty, OH, USA, 2020. [Google Scholar]
- Faruqi, A.; McMullan, G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 878, 180–190. [Google Scholar] [CrossRef]
- MacLaren, I.; MacGregor, T.A.; Allen, C.S.; Kirkland, A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020, 8, 110901. [Google Scholar] [CrossRef]
- Ganesh, K.; Kawasaki, M.; Zhou, J.; Ferreira, P. D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials. Microsc. Microanal. 2010, 16, 614–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019, 25, 563–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bammes, B.; Ramachandra, R.; Mackey, M.R.; Bilhorn, R.; Ellisman, M. Multi-Color Electron Microscopy of Cellular Ultrastructure Using 4D-STEM. Microsc. Microanal. 2019, 25, 1060–1061. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Wen, Y.; Allen, C.S.; Ophus, C.; Han, G.G.D.; Kirkland, A.I.; Kaxiras, E.; Warner, J.H. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, F.; Gao, S.; Zhang, M.; Kirkland, A.I. Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Mazilkin, A.; Sprau, C.; Colsmann, A.; Kübel, C. Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy 2019, 68, 301–309. [Google Scholar] [CrossRef]
- Panova, O.; Ophus, C.; Takacs, C.J.; Bustillo, K.C.; Balhorn, L.; Salleo, A.; Balsara, N.; Minor, A.M. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 2019, 18, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vystavěl, T.; Tůma, L.; Stejskal, P.; Unčovský, M.; Skalický, J.; Young, R. Expanding Capabilities of Low-kV STEM Imaging and Transmission Electron Diffraction in FIB/SEM Systems. Microsc. Microanal. 2017, 23, 554–555. [Google Scholar] [CrossRef] [Green Version]
- Caplins, B.W.; Holm, J.D.; Keller, R.R. Orientation mapping of graphene in a scanning electron microscope. Carbon 2019, 149, 400–406. [Google Scholar] [CrossRef]
- Caplins, B.W.; Holm, J.D.; White, R.M.; Keller, R.R. Orientation mapping of graphene using 4D STEM-in-SEM. Ultramicroscopy 2020, 219, 113137. [Google Scholar] [CrossRef] [PubMed]
- Humphry, M.; Kraus, B.; Hurst, A.; Maiden, A.; Rodenburg, J. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 2012, 3, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, P.; Denninger, P.; Dolle, C.; Spiecker, E. Low energy nano diffraction (LEND)—A versatile diffraction technique in SEM. Ultramicroscopy 2020, 213, 112956. [Google Scholar] [CrossRef]
- Lábár, J.L. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy 2005, 103, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Šlouf, M.; Vacková, T.; Zhigunov, A.; Sikora, A.; Piorkowska, E.; Taťana, V.; Alexander, Z.; Antonin, S.; Ewa, P. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part B 2016, 55, 393–410. [Google Scholar] [CrossRef]
- Shapoval, O.; Oleksa, V.; Šlouf, M.; Lobaz, V.; Trhlíková, O.; Filipová, M.; Janoušková, O.; Engstová, H.; Pankrác, J.; Modrý, A.; et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials 2021, 11, 230. [Google Scholar] [CrossRef]
- Kostiv, U.; Janouskova, O.; Slouf, M.; Kotov, N.; Engstova, H.; Smolkova, K.; Jezek, P.; Horak, D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale 2015, 7, 18096–18104. [Google Scholar] [CrossRef]
- Glasser, L. Crystallographic Information Resources. J. Chem. Educ. 2016, 93, 542–549. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Granja, C.; Jakubek, J.; Polansky, S.; Zach, V.; Krist, P.; Chvatil, D.; Stursa, J.; Sommer, M.; Ploc, O.; Kodaira, S.; et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 908, 60–71. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Kukleva, E.; Suchánková, P.; Štamberg, K.; Vlk, M.; Šlouf, M.; Kozempel, J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019, 9, 21989–21995. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.W.; Dyson, D.J.; Keown, S.R. Interpretation of Electron Diffraction Patterns; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Fultz, B.; Howe, J.M. Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 353–357. [Google Scholar]
- Sparavigna, A.C. Entropy in Image Analysis. Entropy 2019, 21, 502. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Chugh, A.; Yadav, S. Image Deblurring Using Blind Deconvolution; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2019. [Google Scholar]
Dataset ID | Step 1 (nm) | Scanning Matrix | HFW 2 [µm] | WD 3 [mm] | No. of Locations | Total no. of Files | Duration [h:m:s] 4 |
---|---|---|---|---|---|---|---|
Au small | 20 | 50 × 40 | 5 | 5.4 | 1 | 2000 | 0:05:30 |
Au big | 20 | 200 × 200 | 5 | 5.4 | 1 | 40,000 | 1:52:00 |
TbF3 | 50 | 100 × 80 | 5 | 4.6 | 1 | 8000 | 0:22:00 |
NaYF4 | 200 | 50 × 40 | 10 | 3.0 | 10 | 20,000 | 0:55:00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slouf, M.; Skoupy, R.; Pavlova, E.; Krzyzanek, V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials 2021, 11, 962. https://doi.org/10.3390/nano11040962
Slouf M, Skoupy R, Pavlova E, Krzyzanek V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials. 2021; 11(4):962. https://doi.org/10.3390/nano11040962
Chicago/Turabian StyleSlouf, Miroslav, Radim Skoupy, Ewa Pavlova, and Vladislav Krzyzanek. 2021. "Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure" Nanomaterials 11, no. 4: 962. https://doi.org/10.3390/nano11040962
APA StyleSlouf, M., Skoupy, R., Pavlova, E., & Krzyzanek, V. (2021). Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials, 11(4), 962. https://doi.org/10.3390/nano11040962