Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Equipment, and Software
2.2. Preparation of Olive Stone Biochar (OSBC)
2.3. Preparation of Magnetic Olive Stone Biochar (MAG–OSBC)
2.4. Determination of the Point-of-Zero-Charge (pHPZC)
2.5. Batch Adsorption Experiments (Response Surface Design)
2.6. Equilibrium and Kinetic Studies
2.7. Desorption and Regeneration Studies
2.8. Economics and Financial Assessment
3. Results and Discussion
3.1. Adsorbent Characterization and Surface Chemistry
3.1.1. Thermogravimetric Analysis (TGA)
3.1.2. FT-IR Analysis and Point-of-Zero-Charge (pHPZC)
3.1.3. Raman Spectroscopy
3.1.4. Textural Properties
3.1.5. Morphological Characteristics: SEM, EDX, and TEM Analyses
3.1.6. X-ray Diffraction Analysis (XRD)
3.2. Box–Behnken (BB) Design
3.2.1. Investigation of the Statistically Significant Variables
3.2.2. Analysis of Variance (ANOVA)
3.2.3. Response Optimization
3.3. Adsorption Isotherms and Kinetic Studies
3.3.1. Adsorption Isotherms
3.3.2. Kinetic Studies
3.4. Desorption and Recovery Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD 2019. Health at A Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- El-Gendy, A.; El-Shafie, A.S.; Issa, A.; Al-Meer, S.; Al-Saad, K.; El-Azazy, M. Carbon-Based Materials (CBMS) for Determination and Remediation of Antimicrobials in Different Substrates: Wastewater and Infant Foods as Examples. In Carbon-Based Material for Environmental Protection and Remediation; Bartoli, M., Frediani, M., Rosi, L., Eds.; IntechOpen: London, UK, 2020; pp. 103–122. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, Y.; Wang, B.; Cagnetta, G.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. Environ. Pollut. 2020, 264, 114753. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Multidrug and Extensively Drug Resistant Tuberculosis: 2010 Global Report on Surveillance and Response Geneva. Available online: https://www.who.int/tb/publications/mdr_surveillance/en/ (accessed on 5 March 2021).
- World Health Organization. World Health Organization Model List of Essential Medicines: 21st List 2019. Geneva. 2019. Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 5 March 2021).
- Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Zhu, S.; Li, S.; Shang, W.; Zhang, R.; Li, H.; Liu, W.; Xiao, G.; Peng, K.; Zhang, L. High-throughput screening of an FDA-approved drug library identifies inhibitors against arenaviruses and SARS-CoV-2. ACS Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur. Respir J. 2020, 56, 2001708. [Google Scholar] [CrossRef]
- Ateya, A.M. Clofazimine: A potential therapeutic option for severe COVID-19. Med. Hypotheses 2021, 110535. [Google Scholar] [CrossRef]
- Murashov, M.D.; LaLone, V.; Rzeczycki, P.M.; Keswani, R.K.; Yoon, G.S.; Sud, S.; Rajeswaran, W.; Larsen, S.; Stringer, K.A.; Rosania, G.R. The physicochemical basis of Clofazimine-Induced skin pigmentation. J. Investig. Dermatol. 2018, 138, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Zumla, A.I.; Gillespie, S.H.; Hoelscher, M.; Philips, P.P.; Cole, S.T.; Abubakar, I.; McHugh, T.D.; Schito, M.; Maeurer, M.; Nunn, A.J. New antituberculosis drugs, regimens, and adjunct therapies: Needs, advances, and future prospects. Lancet 2014, 14, 327–340. [Google Scholar] [CrossRef]
- Somoskövi, A.; Bruderer, V.; Hömke, R.; Bloemberg, G.V.; Böttger, E.C. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur. Respir. J. 2015, 45, 554–557. [Google Scholar] [CrossRef] [Green Version]
- El-Azazy, M.; El-Shafie, A.S.; El-Gendy, A.; Issa, A.; Al-Meer, S.; Al-Saad, K. A comparison between different agro-wastes and carbon nanotubes for removal of sarafloxacin from wastewater: Kinetics and equilibrium studies. Molecules 2020, 25, 5429. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-Structured adsorptive removal of tigecycline from wastewater: Date pits’ biochar versus the magnetic biochar. Nanomaterials 2021, 11, 30. [Google Scholar] [CrossRef]
- Stets, S.; do Amaral, B.; Schneider, J.T.; de Barros, I.R.; de Liz, M.V.; Ribeiro, R.R.; Nagata, N.; Peralta-Zamora, P. Antituberculosis drugs degradation by UV-based advanced oxidation processes. J. Photochem. Photobiol. A 2018, 353, 26–33. [Google Scholar] [CrossRef]
- Guelfi, D.R.V.; Gozzi, F.; Sirés, I.; Brillas, E.; Machulek, A., Jr.; de Oliveira, S.C. Antituberculosis drug isoniazid degraded by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode and a carbon-PTFE air-diffusion cathode. Environ. Sci. Pollut. Res. 2019, 26, 4415–4425. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A review on effective removal of emerging contaminants from aqc uatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Hassan, S.S.; El-Shafie, A.S.; Zaher, N.; El-Azazy, M. Application of pineapple leaves as adsorbents for removal of rose bengal from wastewater: Process optimization operating face-centered central composite design (FCCCD). Molecules 2020, 25, 3752. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Ashraf, A.; Issa, A.A. Eco-structured biosorptive removal of basic fuchsin using pistachio nutshells: A definitive screening design—based approach. Appl. Sci. 2019, 9, 4855. [Google Scholar] [CrossRef] [Green Version]
- El-Azazy, M.; Dimassi, S.; El-Shafie, A.S.; Issa, A. Bio-waste aloe vera leaves as an efficient adsorbent for titan yellow from wastewater: Structuring of a novel adsorbent using Plackett-Burman factorial design. Appl. Sci. 2019, 9, 4856. [Google Scholar] [CrossRef] [Green Version]
- Al-Saad, K.; El-Azazy, M.; Issa, A.A.; Al-Yafie, A.; El-Shafie, A.S.; Al-Sulaiti, M.; Shomar, B. Recycling of date pits into a green adsorbent for removal of heavy metals: A Fractional Factorial Design-Based approach. Front. Chem. 2019, 7, 552. [Google Scholar] [CrossRef] [Green Version]
- El-Azazy, M.; El-Shafie, A.S.; Issa, A.A.; Al-Sulaiti, M.; Al-Yafie, J.; Shomar, B.; Al-Saad, K. Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett-Burman Design. J. Chem. 2019, 2019, 4926240. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic biochar for environmental remediation: A review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- D’Cruz, B.; Madkour, M.; Amin, M.O.; Al-Hetlani, E. Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater. Chem. Phys. 2020, 240, 122109. [Google Scholar] [CrossRef]
- Liyanage, A.S.; Canaday, S.; Pittman, C.U., Jr.; Mlsna, T. Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/Douglas fir biochar adsorbents. Chemosphere 2020, 258, 127336. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kaczala, F.; Hogland, W.; Marques, M.; Paraskeva, C.A.; Papadakis, V.G.; Sillanpää, M. Valorization of solid waste products from the olive oil industry as potential adsorbents for water pollution control—A review. Environ. Sci. Pollut. Res. 2014, 21, 268–298. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; Lostado-Lorza, R.; Somovilla-Gómez, F.; Escribano-García, R. Effective use of activated carbon from olive stone waste in the biosorption removal of Fe(III) ions from aqueous solutions. J. Clean. Prod. 2021, 294, 126332. [Google Scholar] [CrossRef]
- Eder, S.; Müller, K.; Azzari, P.; Arcifa, A.; Peydayesh, M.; Nyström, L. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit–derived activated carbon. Chem. Eng. J. 2021, 404, 126519. [Google Scholar] [CrossRef]
- El Bakouri, H.; Usero, J.; Morillo, J.; Ouassini, A. Adsorptive features of acid-treated olive stones for drin pesticides: Equilibrium, kinetic and thermodynamic modeling studies. Bioresour. Technol. 2009, 100, 4147–4155. [Google Scholar] [CrossRef]
- Hazzaa, R.; Hussein, M. Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environ. Technol. Innov. 2015, 4, 36–51. [Google Scholar] [CrossRef]
- Uğurlu, M.; Gürses, A.; Açıkyıldız, M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous Mesoporous Mater. 2008, 111, 228–235. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C. Mechanisms of alizarin red s and methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J. Environ. Manag. 2015, 164, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Jafari, K.; Heidari, M.; Rahmanian, O. Wastewater treatment for amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason. Sonochem. 2018, 45, 248–256. [Google Scholar] [CrossRef] [PubMed]
- García-Mateos, F.J.; Ruiz-Rosas, R.; Marqués, M.D.; Cotoruelo, L.M.; Rodríguez-Mirasol, J.; Cordero, T. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem. Eng. J. 2015, 279, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Larous, S.; Meniai, A.-H. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrog. Energy 2016, 41, 10380–10390. [Google Scholar] [CrossRef]
- El-Azazy, M.; Kalla, R.N.; Issa, A.A.; Al-Sulaiti, M.; El-Shafie, A.S.; Shomar, B.; Al-Saad, K. Pomegranate peels as versatile adsorbents for water purification: Application of Box-Behnken Design as a methodological optimization approach. Environ. Prog. Sustain. Energy 2019, 38, 13223. [Google Scholar] [CrossRef]
- Elazazy, M.S. Factorial Design and Machine Learning Strategies: Impacts on Pharmaceutical Analysis. In Spectroscopic Analyses; Zafar, F., Ed.; IntechOpen: London, UK, 2017; pp. 213–230. Available online: https://www.intechopen.com/books/spectroscopic-analyses-developments-and-applications/factorial-design-and-machine-learning-strategies-impacts-on-pharmaceuticalanalysis (accessed on 30 October 2020). [CrossRef] [Green Version]
- Karunanayake, A.G.; Todd, O.A.; Crowley, M.L.; Ricchetti, L.B.; Pittman, C.U., Jr.; Anderson, R.; Mlsna, T.E. Rapid removal of salicylic acid, 4-Nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste douglas Fir. Chem. Eng. J. 2017, 319, 75–88. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Bazrafshan, A.A.; Jannesar, R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrason. Sonochem. 2017, 34, 294–304. [Google Scholar] [CrossRef]
- Shahrashoub, M.; Bakhtiari, S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater. 2021, 311, 110692. [Google Scholar] [CrossRef]
- Rahmani, R.; Gharanfoli, M.; Gholamin, M.; Darroudi, M.; Chamani, J.; Sadri, K. Green synthesis of 99m Tc-labeled-Fe3O4 nanoparticles using Quince seeds extract and evaluation of their cytotoxicity and biodistribution in rats. J. Mol. Struct. 2019, 1196, 394–402. [Google Scholar] [CrossRef]
- Abdelhadi, S.O.; Dosoretz, C.G.; Rytwo, G.; Gerchman, Y.; Azaizeh, H. Production of biochar from olive mill solid waste for heavy metal removal. Bioresour Technol. 2017, 244, 759–767. [Google Scholar] [CrossRef]
- Bolla, G.; Nangia, A. Clofazimine mesylate: A high solubility stable salt. Cryst. Growth Des. 2012, 12, 6250–6259. [Google Scholar] [CrossRef]
- Chaves, L.L.; Lima, S.; Vieira, A.C.C.; Ferreira, D.; Sarmento, B.; Reis, S. Overcoming clofazimine intrinsic toxicity: Statistical modelling and characterization of solid lipid nanoparticles. J. R. Soc. Interface 2018, 15, 20170932. [Google Scholar] [CrossRef]
- Moubarik, A.; Grimi, N. Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res. Int. 2015, 73, 169–175. [Google Scholar] [CrossRef]
- Blázquez, G.; Martín-Lara, M.A.; Dionisio-Ruiz, E.; Tenorio, G.; Calero, M. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J. Ind. Eng. Chem. 2011, 17, 824–833. [Google Scholar] [CrossRef]
- Guo, C.; Hu, Y.; Qian, H.; Ning, J.; Xu, S. Magnetite (Fe3O4) tetrakaidekahedral microcrystals: Synthesis, characterization, and micro-Raman study. Mater. Charact. 2011, 62, 148–151. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Lopes, F.N. Heated goethite and natural hematite: Can raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Ivashchenko, O.; Jurga-Stopa, J.; Coy, E.; Peplinska, B.; Pietralik, Z.; Jurga, S. Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites. Appl. Surf. Sci. 2016, 364, 400–409. [Google Scholar] [CrossRef]
- Buttersack, C. Modeling of type IV and V sigmoidal adsorption isotherms. Phys. Chem. Chem. Phys. 2019, 21, 5614–5626. [Google Scholar] [CrossRef] [Green Version]
- Anyika, C.; Asri, N.A.M.; Majid, Z.A.; Yahya, A.; Jaafar, J. Synthesis and characterization of magnetic activated carbon developed from palm kernel shells. Nanotechnol. Environ. Eng. 2017, 2, 1–25. [Google Scholar] [CrossRef]
- Castro, C.S.; Guerreiro, M.C.; Gonçalves, M.; Oliveira, L.C.A.; Anastácio, A.S. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J. Hazard. Mater. 2009, 164, 609–614. [Google Scholar] [CrossRef]
- Kahani, S.A.; Hamadanian, M.; Vandadi, O. Deposition of magnetite nanoparticles in activated carbons and preparation of magnetic activated carbons. AIP Conf. Proc. 2007, 929, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Behnken, D.W. Some new three level designs for the Study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Elmasry, M.S.; Elazazy, M.S.; El-Sayed, H.M. Multivariate analysis of tioconazole–TCNQ charge transfer interaction: Kinetics, thermodynamics and twofold response optimization. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 202, 401–409. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Langmuir, I. Adsorption of gases on glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wang, J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850. [Google Scholar] [CrossRef]
- Araújo, C.S.T.; Almeida, I.L.S.; Rezende, H.C.; Marcionilio, S.M.L.O.; Léon, J.J.L.; de Matos, T.N. Elucidation of mechanism involved in adsorption of Pb (II) onto Lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 2018, 137, 348–354. [Google Scholar] [CrossRef]
- Moussavi, G.; Barikbin, B. Biosorption of chromium (VI) from industrial wastewater onto pistachio hull waste biomass. Chem. Eng. J. 2010, 162, 893–900. [Google Scholar] [CrossRef]
- Salvestrini, S.; Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D. Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis. J. Environ. Chem. Eng. 2020, 8, 104105. [Google Scholar] [CrossRef]
- Vafaei, A.; Ghaedi, A.M.; Avazzadeh, Z.; Kiarostami, V.; Agarwal, S.; Gupta, V.K. Removal of hydrochlorothiazide from molecular liquids using carbon nanotubes: Radial basis function neural network modeling and culture algorithm optimization. J. Mol. Liq. 2021, 324, 114766. [Google Scholar] [CrossRef]
- Singh, T.; Singhal, R. Methyl orange adsorption by reuse of a waste adsorbent poly(AAc/AM/SH)-MB superabsorbent hydrogel: Matrix effects, adsorption thermodynamic and kinetics studies. Desalination Water Treat. 2015, 53, 1942–1956. [Google Scholar] [CrossRef]
Adsorbent | Adsorbate | Analytical Approach | Kinetic Model | Isotherm Model | Surface Area (m2/g) | qmax (mg/g) | %R | Ref. |
---|---|---|---|---|---|---|---|---|
Olive stone biochar (OSBC) Magnetic olive stone biochar (MAG–OSBC) | Clofazimine (CLOF) | Batch adsorption, multivariate analysis (Box–Behnken) design | * PSO | Langmuir and Freundlich | 22.20 33.82 | 137.90 174.03 | 98.10% 98.61% | Current study |
Acid treated olive stones (ATOS) | Drin pesticides | Batch adsorption, univariate analysis | * PSO | Freundlich | 479 | 19.54–43.71 | ˃90% | [31] |
Olive stones (OS) and activated carbon olive stones (OSAC) | Methylene blue (MB) | Batch adsorption, univariate analysis | * PSO | Temkin | ** NS | OSAC: 16.2 OS: 12.9 | OSAC: 94% OS: 70% | [32] |
Zinc chloride-activated carbon prepared from olive stone (ACOS) | Remazol red B (RRB) | Batch adsorption,univariate analysis | * PSO | Langmuir | ACOS: 3 ZnCl2-activated: 58–790 | ACOS: 9.33 | ACOS: 75% | [33] |
Olive stone biomass (OS) | Alizarin red S (ARS) Methylene blue (MB) | Batch adsorption, univariate analysis | * PSO | Redlich–Peterson | 0.16 | ARS: 16.10 MB: 13.20 | ARS: 85% MB: 75% | [34] |
Magnetic adsorbent from the olive kernel (MA-OK) | Amoxicillin (AMX) | Batch adsorption, univariate analysis | * PSO | Langmuir | 2188.0 | 238.1 | ** NS | [35] |
Olive stones chemically activated with phosphoric acid | Paracetamol (PA) | Batch and small-scale column studies, univariate analysis | Vermeulen | Langmuir | 1000 | 100 | ** NS | [36] |
Activated carbon from olive stones (ACOS) | Diclofenac sodium (DCF) | Batch adsorption, univariate analysis | * PSO | BET | 83.72 | 11.0071 | ** NS | [37] |
Factors | −1 | 0 | +1 |
---|---|---|---|
pH (A, pH unit) | 3.0 | 6.0 | 9.0 |
Adsorbent dose (AD, B, mg/13 mL) | 30.0 | 75.0 | 120.0 |
Initial drug concentration ([CLOF], C, ppm) | 10.0 | 35.0 | 60.0 |
Contact time (CT, D, min) | 10.0 | 50.0 | 90.0 |
Dependent variables | Percentage removal (%R) | ||
Adsorption capacity (qe, mg/g) |
Variables | OSBC | MAG–OSBC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial No | AD | [CLOF] | CT | pH | %R Obs.* | %R Pred.** | RE *** | qe Obs.* | qe Pred.** | RE *** | %R Obs.* | %R Pred.** | RE *** | qe Obs.* | qe Pred.** | RE *** |
01 | 30 (−) | 35 (0) | 50 (0) | 3 (−) | 97.81 | 98.56 | 0.01 | 12.67 | 11.29 | 0.12 | 50.27 | 48.14 | 0.04 | 7.55 | 7.36 | 0.03 |
02 | 120 (+) | 60 (+) | 50 (0) | 6 (0) | 44.37 | 44.85 | 0.01 | 2.88 | 2.84 | 0.02 | 71.18 | 71.80 | 0.01 | 4.99 | 4.98 | 0.00 |
03 | 30 (−) | 10 (−) | 50 (0) | 6 (0) | 27.12 | 31.65 | 0.14 | 1.57 | 1.97 | 0.20 | 56.21 | 55.44 | 0.01 | 2.42 | 2.35 | 0.03 |
04 | 75 (0) | 35 (0) | 10 (−) | 3 (−) | 94.11 | 93.69 | 0.00 | 5.69 | 5.72 | 0.00 | 47.21 | 46.81 | 0.01 | 2.85 | 2.80 | 0.02 |
05 | 30 (−) | 35 (0) | 50 (0) | 9 (+) | 70.79 | 67.74 | 0.05 | 7.85 | 7.57 | 0.04 | 62.67 | 59.93 | 0.05 | 9.02 | 8.51 | 0.06 |
06 | 120 (+) | 35 (0) | 90 (+) | 6 (0) | 81.70 | 75.15 | 0.09 | 1.85 | 1.42 | 0.30 | 77.45 | 73.51 | 0.05 | 2.94 | 2.78 | 0.06 |
07 | 75 (0) | 10 (−) | 90 (+) | 6 (0) | 38.74 | 43.18 | 0.10 | 0.67 | −0.12 | 6.59 | 86.62 | 83.65 | 0.04 | 1.50 | 1.44 | 0.04 |
08 | 30 (−) | 35 (0) | 10 (−) | 6 (0) | 32.49 | 33.34 | 0.03 | 5.29 | 5.93 | 0.11 | 27.12 | 26.95 | 0.01 | 4.44 | 4.52 | 0.02 |
09 | 75 (0) | 10 (−) | 10 (−) | 6 (0) | 52.30 | 51.21 | 0.02 | 0.90 | 0.11 | 7.22 | 61.61 | 58.43 | 0.05 | 1.07 | 0.99 | 0.08 |
10 | 120 (+) | 35 (0) | 10 (−) | 6 (0) | 42.22 | 47.57 | 0.11 | 2.08 | 2.14 | 0.03 | 54.80 | 52.27 | 0.05 | 2.07 | 2.03 | 0.02 |
11 | 120 (+) | 10 (−) | 50 (0) | 6 (0) | 82.68 | 82.98 | 0.00 | 0.89 | 1.65 | 0.46 | 98.61 | 100.80 | 0.02 | 1.12 | 1.14 | 0.02 |
12 | 75 (0) | 10 (−) | 50 (0) | 3 (−) | 92.12 | 86.68 | 0.06 | 1.59 | 1.84 | 0.13 | 97.00 | 94.37 | 0.03 | 1.67 | 1.63 | 0.03 |
13 | 75 (0) | 60 (+) | 50 (0) | 3 (−) | 97.81 | 96.47 | 0.01 | 10.14 | 10.16 | 0.00 | 84.15 | 82.38 | 0.02 | 9.22 | 8.91 | 0.03 |
14 | 75 (0) | 35 (0) | 50 (0) | 6 (0) | 80.47 | 81.49 | 0.01 | 4.88 | 4.96 | 0.02 | 89.37 | 91.08 | 0.02 | 5.42 | 5.58 | 0.03 |
15 | 75 (0) | 35 (0) | 50 (0) | 6 (0) | 79.71 | 81.49 | 0.02 | 4.83 | 4.96 | 0.03 | 88.00 | 91.08 | 0.03 | 5.27 | 5.58 | 0.06 |
16 | 75 (0) | 10 (−) | 50 (0) | 9 (+) | 82.49 | 79.75 | 0.03 | 1.43 | 1.61 | 0.11 | 91.65 | 92.60 | 0.01 | 1.59 | 1.67 | 0.05 |
17 | 75 (0) | 35 (0) | 10 (−) | 9 (+) | 38.35 | 39.02 | 0.02 | 2.32 | 2.18 | 0.07 | 52.24 | 55.20 | 0.05 | 3.17 | 3.32 | 0.04 |
18 | 120 (+) | 35 (0) | 50 (0) | 9 (+) | 96.74 | 95.04 | 0.02 | 3.66 | 3.61 | 0.01 | 72.18 | 72.47 | 0.00 | 2.96 | 2.92 | 0.02 |
19 | 120 (+) | 35 (0) | 50 (0) | 3 (−) | 97.61 | 99.72 | 0.02 | 3.69 | 3.41 | 0.08 | 95.99 | 96.78 | 0.01 | 3.63 | 3.70 | 0.02 |
20 | 75 (0) | 60 (+) | 90 (+) | 6 (0) | 77.62 | 77.76 | 0.00 | 8.07 | 8.31 | 0.03 | 69.11 | 70.30 | 0.02 | 7.18 | 7.47 | 0.04 |
21 | 30 (−) | 35 (0) | 90 (+) | 6 (0) | 68.74 | 60.93 | 0.13 | 9.32 | 9.47 | 0.02 | 46.46 | 48.19 | 0.04 | 7.02 | 7.27 | 0.03 |
22 | 75 (0) | 60 (+) | 50 (0) | 9 (+) | 66.53 | 67.9 | 0.02 | 6.92 | 6.88 | 0.01 | 73.26 | 74.75 | 0.02 | 7.59 | 7.93 | 0.04 |
23 | 75 (0) | 60 (+) | 10 (−) | 6 (0) | 19.95 | 14.57 | 0.37 | 5.03 | 5.26 | 0.04 | 45.76 | 46.11 | 0.01 | 4.96 | 4.96 | 0.00 |
24 | 75 (0) | 35 (0) | 90 (+) | 3 (−) | 80.02 | 84.35 | 0.05 | 4.85 | 5.35 | 0.09 | 82.13 | 85.35 | 0.04 | 4.98 | 5.15 | 0.03 |
25 | 30 (−) | 60 (+) | 50 (0) | 6 (0) | 63.00 | 67.72 | 0.07 | 14.77 | 14.36 | 0.03 | 53.65 | 54.72 | 0.02 | 13.95 | 14.01 | 0.00 |
26 | 75 (0) | 35 (0) | 50 (0) | 6 (0) | 84.30 | 81.49 | 0.03 | 4.82 | 4.96 | 0.03 | 90.30 | 91.08 | 0.01 | 5.60 | 5.58 | 0.00 |
27 | 75 (0) | 35 (0) | 90 (+) | 9 (+) | 98.10 | 103.52 | 0.05 | 5.05 | 5.38 | 0.06 | 62.70 | 66.08 | 0.05 | 3.80 | 3.97 | 0.04 |
Parameters | OSBC | MAG–OSBC |
---|---|---|
Langmuir surface area (m2/g) | 22.20 | 33.82 |
Total pore volume (cm3/g) | 0.086 | 0.166 |
Average pore radius (°A) | 86.1 | 87.7 |
Optimized Response | R2% | R2–Adj% | R2–Pred% | Optimum conditions |
---|---|---|---|---|
%R (OSBC) | 97.76 | 95.53 | 90.42 | AD = 100 mg, [CLOF] = 25 ppm, CT = 35 min, pH = 3.0 (d = 1.0000, %R = 100%) |
qe(OSBC) | 98.81 | 97.42 | 93.32 | AD = 30 mg, [CLOF] = 60 ppm, CT = 85 min, pH = 3.0 (d = 1.0000, qe = 18.42 mg/g) |
%R (MAG–OSBC) | 99.52 | 98.86 | 96.65 | AD = 110 mg, [CLOF] = 10 ppm, CT = 65 min, pH = 3.0 (d = 1.0000, %R = 100%) |
qe(MAG–OSBC) | 99.86 | 99.66 | 99.05 | AD = 30 mg, [CLOF] = 60 ppm, CT = 63 min, pH = 6.0 (d = 1.0000, qe = 14.62 mg/g) |
Isotherm | Equations (Nonlinear Forms) | Parameters | Value | |
---|---|---|---|---|
OSBC | MAG–OSBC | |||
Langmuir | qm (mg/g) | 137.90 | 174.03 | |
KL (L·mole−1) | 0.011 | 0.010 | ||
R2 | 0.9865 | 0.9879 | ||
Freundlich | 1/n | 0.82 | 0.83 | |
KF (mole/g) (L/mole)1/n | 2.00 | 2.42 | ||
R2 | 0.9842 | 0.9886 | ||
Temkin | bT (J/mole) | 344.6 | 317.4 | |
AT (L/mole) | 1.435 | 1.685 | ||
R2 | 0.6334 | 0.7346 | ||
D–R | · exp (−β·ε2) | 2.74 × 10−8 | 5.67 × 10−8 | |
E (kJ/mole) | 4.271 | 2.969 | ||
qm (mg/g) | 149.32 | 50.99 | ||
R2 | 0.9603 | 0.8792 |
Models | Parameter | Value | |
---|---|---|---|
OSBC | MAG–OSBC | ||
Pseudo-first-order (PFO) = k1(qe − qt) | K1 (min−1) | 3.644 | 3.236 |
qe (mg/g) | 67.01 | 74.10 | |
R2 | 0.6725 | 0.5025 | |
Pseudo-second-order (PSO) = k2(qe − qt)2 | K2 (g·mg−1·min−1) | 0.524 | 0.281 |
qe (mg/g) | 67.32 | 74.67 | |
R2 | 0.9416 | 0.9224 | |
Elovich model qt = | α | 8.28 × 1044 | 2.08 × 1037 |
Β | 1.585 | 1.195 | |
R2 | 0.7761 | 0.9479 | |
Weber−Morris model (WM) | KI | 0.255 | 0.475 |
C | 65.97 | 72.19 | |
R2 | 0.6789 | 0.7605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Azazy, M.; Nabil, I.; Hassan, S.S.; El-Shafie, A.S. Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine. Nanomaterials 2021, 11, 963. https://doi.org/10.3390/nano11040963
El-Azazy M, Nabil I, Hassan SS, El-Shafie AS. Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine. Nanomaterials. 2021; 11(4):963. https://doi.org/10.3390/nano11040963
Chicago/Turabian StyleEl-Azazy, Marwa, Iman Nabil, Siham S. Hassan, and Ahmed S. El-Shafie. 2021. "Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine" Nanomaterials 11, no. 4: 963. https://doi.org/10.3390/nano11040963
APA StyleEl-Azazy, M., Nabil, I., Hassan, S. S., & El-Shafie, A. S. (2021). Adsorption Characteristics of Pristine and Magnetic Olive Stones Biochar with Respect to Clofazimine. Nanomaterials, 11(4), 963. https://doi.org/10.3390/nano11040963