Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells
Abstract
:1. Introduction
2. Nanocarriers for Drug Delivery
3. Silver Nanoparticles
3.1. Synthesis Methods
3.2. Characterization Methods
3.3. Biotoxicity
3.4. Surface Modifications
4. Anticancer Drugs Coupled to Silver Nanoparticles
4.1. Methotrexate Anticancer Drug
4.2. Doxorubicin Anticancer Drug
4.3. Folic Acid Anticancer Drug
4.4. Alendronate Anticancer Drug
4.5. Epirubicin Anticancer Drug
4.6. Paclitaxel Anticancer Drug
4.7. Imatinib Anticancer Drug
4.8. Gemcitabine Anticancer Drug
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azharuddin, M.; Zhu, G.H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A.P.F.; Patra, H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019, 55, 6964–6996. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Gali-Muhtasib, H.; Chouaib, R. Nanoparticles in cancer treatment: Types and preparation methods. In Nanoparticle Drug Delivery Systems for Cancer Treatment, 1st ed.; Jenny Stanford Publishing: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ealia, A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; Chouaib, R. Anti-tumor activity of verbascoside-loaded noble metal nanoparticles. In Nanoparticle Drug Delivery Systems for Cancer Treatment, 1st ed.; Jenny Stanford Publishing: Boca Raton, FL, USA, 2020. [Google Scholar]
- Krishnan, P.D.; Banas, D.; Durai, R.D.; Kabanov, D.; Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Ruttkay-Nedecky, B.; Nguyen, H.V.; Farid, A.; et al. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics 2020, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef] [PubMed]
- Lara, H.H.; Ayala-Núñez, N.V.; Turrent, L.D.C.I.; Padilla, C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biot. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Rodzinski, A.; Guduru, R.; Liang, P.; Hadjikhani, A.; Stewart, T.; Stimphil, E.; Runowicz, C.; Cote, R.; Altman, N.; Datar, R.; et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Rep. 2016, 6, 20867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Itani, R.; Al Faraj, A. siRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung Cancer. Int. J. Mol. Sci. 2019, 20, 6088. [Google Scholar] [CrossRef] [Green Version]
- Gali-Muhtasib, H.; Sarieddine, R.; Chouaib, R. Nanoparticles as drug delivery systems for cancer treatment: Applications in targeted therapy and personalized medicine. In Nanoparticle Drug Delivery Systems for Cancer Treatment, 1st ed.; Jenny Stanford Publishing: Boca Raton, FL, USA, 2020. [Google Scholar]
- Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; Chouaib, R. The role of nanoparticles in cancer therapy through apoptosis induction. In Nanoparticle Drug Delivery Systems for Cancer Treatment, 1st ed.; Jenny Stanford Publishing: Boca Raton, FL, USA, 2020. [Google Scholar]
- Velavan, P.; Karuppusamy, C.; Venkatesan, P. Nanoparticles as Drug Delivery Systems. J. Pharm. Sci. Res. 2015, 7, 1118–1122. [Google Scholar]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef] [Green Version]
- Henrich-Noack, P.; Nikitovic, D.; Neagu, M.; Docea, A.O.; Engin, A.B.; Gelperina, S.; Shtilman, M.; Mitsias, P.; Tzanakakis, G.; Gozes, I.; et al. The blood-brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine 2019, 17, 359–379. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marassi, V.; Di Cristo, L.; Smith, S.G.J.; Ortelli, S.; Blosi, M.; Costa, A.L.; Reschiglian, P.; Volkov, Y.; Prina-Mello, A. Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 2018, 5, 171113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.-L.; Dong, Y.-M.; Zhu, X.-Y.; Zhang, W.-J.; Wang, C.; Jiao, H.-J. Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes. Analyst 2011, 136, 5256–5260. [Google Scholar] [CrossRef]
- Chen, L.Q.; Xiao, S.J.; Peng, L.; Wu, T.; Ling, J.; Li, Y.F.; Huang, C.Z. Aptamer-Based Silver Nanoparticles Used for Intracellular Protein Imaging and Single Nanoparticle Spectral Analysis. J. Phys. Chem. B. 2010, 114, 3655–3659. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology 2012, 40, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, E.; Senes, N.; D’Avino, C.; Tsamesidis, I.; Pinna, A.; Medici, S.; Pantaleo, A. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite. PLoS ONE 2020, 15, e0238532. [Google Scholar] [CrossRef]
- Pangestika, R.; Ernawati, R. Antiviral Activity Effect of Silver Nanoparticles (Agnps) Solution Against the Growth of Infectious Bursal Disease Virus on Embryonated Chicken Eggs with Elisa Test. KnE Life Sci. 2017, 3, 536–548. [Google Scholar] [CrossRef] [Green Version]
- Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M.Z.; Ali, S.; Tricoli, A. Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped Ag-nanoparticles against breast cancer. Appl. Nanosci. 2017, 7, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.K.; Kim, J.-H.; Jeong, J.-H.; Shin, B.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf. B Biointerfaces 2017, 153, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.; Teixeira, A.L.; Dias, F.; Machado, V.; Medeiros, R.; Prior, J.A.V. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem. 2020, 63, 14308–14335. [Google Scholar] [CrossRef] [PubMed]
- Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Mukherji, S.; Bharti, S.; Shukla, G.; Mukherji, S. Synthesis and characterization of size- and shape-controlled silver nanoparticles. Phys. Sci. Rev. 2018, 4. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Kharisov, B.I.; González, C.M.O.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef] [Green Version]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanov, I.; Stefanov, S.; Andonova, V. Silver Nanoparticles as Multi-Functional Drug Delivery Systems. Nanomedicines 2018. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Shandiz, S.A.S.; Ardestani, M.S.; Shahbazzadeh, D.; Assadi, A.; Cohan, R.A.; Asgary, V.; Salehi, S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 298–309. [Google Scholar] [CrossRef]
- Prabha, S.; Arya, G.; Chandra, R.; Ahmed, B.; Nimesh, S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif. Cells Nanomed. Biotechnol. 2014, 44, 83–91. [Google Scholar] [CrossRef]
- Doshi, N.; Mitragotri, S. Macrophages Recognize Size and Shape of Their Targets. PLoS ONE 2010, 5, e10051. [Google Scholar] [CrossRef] [Green Version]
- Biswas, N. Modified mesoporous silica nanoparticles for enhancing oral bioavailability and antihypertensive activity of poorly water soluble valsartan. Eur. J. Pharm. Sci. 2017, 99, 152–160. [Google Scholar] [CrossRef]
- Mulenos, M.R.; Lujan, H.; Pitts, L.R.; Sayes, C.M. Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. Nanomaterials 2020, 10, 1953. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Wang, J.; Yang, Q.; Yao, B.; Zhao, Y.; Zhao, A.; Sun, W.; Zhang, Q. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environ. Toxicol. Pharm. 2017, 56, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Tekade, R.K., Ed.; Academic Press: London, UK, 2019; pp. 527–612. [Google Scholar]
- Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest. Control 2018, 28, 28. [Google Scholar] [CrossRef] [Green Version]
- Huq, M.A. Green Synthesis of Silver Nanoparticles Using Pseudoduganella eburnea MAHUQ-39 and Their Antimicrobial Mechanisms Investigation against Drug Resistant Human Pathogens. Int. J. Mol. Sci. 2020, 21, 1510. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; He, H.; Qi, J.; Lu, Y.; Zhao, W.; Dong, X.; Wu, W. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int. J. Pharm. 2018, 547, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Merck. Drug Delivery FAQs. Available online: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/drug-delivery/drug-delivery-questions.html (accessed on 19 September 2020).
- Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Morales, J.D.M.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett. 2017, 276, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; Alsalhi, M.S.; Siddiqui, M.K. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V.; Malvindi, M.A.; Galeone, A.; Brunetti, V.; De Luca, E.; Kote, S.; Kshirsagar, P.; Sabella, S.; Bardi, G.; Pompa, P.P. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 731–739. [Google Scholar] [CrossRef]
- Suárez, V.T.; Karepina, E.; Chevallet, M.; Gallet, B.; Cottet-Rousselle, C.; Charbonnier, P.; Moriscot, C.; Michaud-Soret, I.; Bal, W.; Fuchs, A.; et al. Nuclear translocation of silver ions and hepatocyte nuclear receptor impairment upon exposure to silver nanoparticles. Environ. Sci. Nano 2020, 7, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-Y.; Choi, Y.-J.; Jung, E.-J.; Yin, H.-Q.; Kwon, J.-T.; Kim, J.-E.; Im, H.-T.; Cho, M.-H.; Kim, J.-H.; Kim, H.-Y.; et al. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J. Nanopart. Res. 2010, 12, 1567–1578. [Google Scholar] [CrossRef]
- Lima, R.d.; Seabra, A.; Durán, N. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 2012, 32, 867–879. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karuppaiah, A.; Siram, K.; Selvaraj, D.; Ramasamy, M.; Babu, D.; Sankar, V. Synergistic and enhanced anticancer effect of a facile surface modified non-cytotoxic silver nanoparticle conjugated with gemcitabine in metastatic breast cancer cells. Mater. Today Commun. 2020, 23, 100884. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and Their Loading Strategies. Adv. Healthc. Mater. 2019, 8, e1801002. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Marongiu, F.; Manca, M.L.; Pompei, R.; Angius, F.; Ardu, A.; Fadda, A.M.; Manconi, M.; Ennas, G. Combination of grape extract-silver nanoparticles and liposomes: A totally green approach. Eur. J. Pharm. Sci. 2017, 97, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mohamad, R.; Rahim, R.A.; Mohammadinejad, R.; Bin Ariff, A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int. J. Biol. Macromol. 2017, 104, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Grijalva, M.; Debut, A.; de la Torre, B.G.; Albericio, F.; Cumbal, L.H. Peptides conjugated to silver nanoparticles in biomedicine—a “value-added” phenomenon. Biomater. Sci. 2016, 4, 1713–1725. [Google Scholar] [CrossRef]
- Pollok, N.E.; Rabin, C.; Smith, L.; Crooks, R.M. Orientation-Controlled Bioconjugation of Antibodies to Silver Nanoparticles. Bioconjugate Chem. 2019, 30, 3078–3086. [Google Scholar] [CrossRef]
- Elbaz, N.M.; Ziko, L.; Siam, R.; Mamdouh, W. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro. Sci. Rep. 2016, 6, 30729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Servos, M.R.; Liu, J. Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. Chem. Commun. 2012, 48, 10114–10116. [Google Scholar] [CrossRef] [Green Version]
- Raja, G.; Jang, Y.-K.; Suh, J.-S.; Kim, H.-S.; Ahn, S.H.; Kim, T.-J. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers 2020, 12, 664. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle Delivery of Cancer Drugs. Annu. Rev. Med. 2012, 63, 185–198. [Google Scholar] [CrossRef]
- Spencer, D.S.; Puranik, A.S.; Peppas, N.A. Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr. Opin. Chem. Eng. 2015, 7, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Palai, P.K.; Mondal, A.; Chakraborti, C.K.; Banerjee, I.; Pal, K. Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Appl. Sci. 2019, 1, 269. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Chen, G.L.; Chen, G.F.; Guo, M.Q. One-Pot Synthesis of Epirubicin-Capped Silver Nanoparticles and Their Anticancer Activity against Hep G2 Cells. Pharmaceutics 2019, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Pudlarz, A.; Szemraj, J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci. 2018, 13, 285–298. [Google Scholar] [CrossRef]
- Rozalen, M.; Sánchez-Polo, M.; Fernández-Perales, M.; Widmann, T.J.; Rivera-Utrilla, J. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Adv. 2020, 10, 10646–10660. [Google Scholar] [CrossRef]
- Zeng, F.; Xu, D.; Zhan, C.; Liang, C.; Zhao, W.; Zhang, J.; Feng, H.; Ma, X. Surfactant-Free Synthesis of Graphene Oxide Coated Silver Nanoparticles for SERS Biosensing and Intracellular Drug Delivery. ACS Appl. Nano Mater. 2018, 1, 2748–2753. [Google Scholar] [CrossRef]
- Wang, Y.; Newell, B.B.; Irudayaraj, J. Folic acid protected silver nanocarriers for targeted drug delivery. J. Biomed. Nanotechnol. 2012, 8, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Benyettou, F.; Rezgui, R.; Ravaux, F.; Jaber, T.; Blumer, K.; Jouiad, M.; Motte, L.; Olsen, J.C.; Platas-Iglesias, C.; Magzoub, M.; et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J. Mater. Chem. B 2015, 3, 7237–7245. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xiao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int. J. Nanomed. 2016, 11, 6693–6702. [Google Scholar] [CrossRef] [Green Version]
- Medline Plus. Methotrexate. Available online: https://medlineplus.gov/druginfo/meds/a682019.html (accessed on 27 January 2021).
- European Medicines Agency. Methotrexate Containing Medicinal Products. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/methotrexate-containing-medicinal-products (accessed on 12 March 2021).
- Frigerio, B.; Bizzoni, C.; Jansen, G.; Leamon, C.P.; Peters, G.J.; Low, P.S.; Matherly, L.H.; Figini, M. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases. J. Exp. Clin. Cancer Res. 2019, 38, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thermo Fisher Scientific. Carbodiimide Crosslinker Chemistry. Available online: https://www.thermofisher.com/pt/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/carbodiimide-crosslinker-chemistry.html (accessed on 28 January 2021).
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2012, 65, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhao, B. Chapter 10—Surface-enhanced Raman scattering (SERS) and applications. In Molecular and Laser Spectroscopy; Gupta, V.P., Ozaki, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 349–386. [Google Scholar] [CrossRef]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 357027. [Google Scholar] [CrossRef] [PubMed]
- Toschi, L.; Cappuzzo, F. Gemcitabine for the treatment of advanced nonsmall cell lung cancer. Onco Targets Ther. 2009, 2, 209–217. [Google Scholar] [CrossRef] [Green Version]
Anti-Cancer Drug Capped AgNPs | In Vitro Assays | ||||||||
---|---|---|---|---|---|---|---|---|---|
Anticancer Drug | Method of Synthesis | Functionalization Ligand | Synthesis Step | Reagents | SPR Band (nm) | Size (nm) | Viability Test | Cancer Cell Line | Cell Viability (%)/IC50 (µg/mL) |
Methotrexate [73] | Conventional heating | MTX |
| NaBH4 | 394 | DLS: 14.7 ± 2.7 HRTEM: 11.13 ± 2.27 | FDA hydrolysis | HTC-116 colorectal cancer | |
Trisodium citrate dehydrate | 88 µg/mL (12 h) | ||||||||
38 µg/mL (24 h) | |||||||||
AgNO3 | 23 µg/mL (48 h) | ||||||||
NaOH | |||||||||
| MTX | - | A-549 human lung carcinoma | ≈86% (12 h) | |||||
K2CO3 | ≈79% (24 h) | ||||||||
| MTX | 405 | DLS: 21.9 ± 8.7 HRTEM: 15.2 ± 3.9 | ≈32% (48 h) | |||||
AgNPs | |||||||||
Methotrexate [30] | Conventional heating | PVPK30 | GO dispersion | Graphite | - | TEM: 22.3 ± 2.7 | MTS | MCF-7 breast cancer | n/a |
H2SO4 | |||||||||
KMnO4 | |||||||||
H2O:H2O2 (3:1) | |||||||||
GO/AgNPs | GO dispersion | 400 | HepG2 liver cancer | n/a | |||||
AgNO3 | |||||||||
Glucose | |||||||||
Starch | |||||||||
MTX-GO/AgNPs | GO/AgNPs | - | |||||||
EDC | |||||||||
MTX | |||||||||
PVPK30 | |||||||||
Doxorubicin [70] | Biosynthesis | GO suspension | KMnO4 | - | HRTEM: 25 | MTT | HeLa | 41.56% | |
H2SO4 | |||||||||
H2O2 | |||||||||
Aqueous extract | Azadirachta indica | - | |||||||
NGO-AgNPs | Silver nitrate | 436 | |||||||
mPEG-NH2 | GO dispersion | ||||||||
DOX | Aqueous extract | ||||||||
NGO-AgNPs-PEG | mPEG-NH2 | - | |||||||
NGO-AgNPs | |||||||||
EDC | |||||||||
NHS | |||||||||
NGO-AgNPs-PEG-DOX | DOX | - | |||||||
NGO-AgNPs-PEG | |||||||||
Doxorubicin [74] | Conventional heating | NGO | Graphite powder | - | - | MTT | HepG2 liver cancer | n/a | |
H2SO4 | |||||||||
KMnO4 | |||||||||
H2O2 | |||||||||
GO | HNO3 | ||||||||
DOX | AgNPs-NGO | AgNO3 | 400 | ||||||
NGO | TEM: 20 | ||||||||
NaBH4 | DLS: 40 | ||||||||
AgNPs-NGO-DOX | AgNPs-GO | - | - | ||||||
DOX | |||||||||
Doxorubicin [41] | Biosynthesis | Butea monosperma leaf extract | Aqueous extract | Butea monosperma | - | - | MTT | B16F10 murine melanoma | n/a |
AgNPs | AgNO3 | 440–475 | TEM: 50 | ||||||
Aqueous extract | DLS: 82.17 ± 1.8 | MCF-7 breast cancer | n/a | ||||||
AgNPs-DOX | DOX | - | DLS: 107.32 ± 2.1 | ||||||
AgNPs | |||||||||
Doxorubicin [75] | Conventional heating | FA-AgNPs | AgNO3 | 409 | TEM: 23 ± 2 | MTT | KB human carcinoma | n/a | |
FA | |||||||||
Folic acid | Ascorbic acid | ||||||||
DOX | NaOH | ||||||||
FA-AgNPs-DOX | FA-AgNPs | - | - | ||||||
DOX | |||||||||
Doxorubicin Alendronate [76] | Microwave | ALD-AgNPs | AgNO3 | 412 | SEM: 11 | Resazurin | HeLa | 0.1 µM | |
ALD | TEM: 11 | ||||||||
ALD | DLS: 20 | ||||||||
DOX | DOX-ALD-AgNPs | ALD-AgNPs | - | - | |||||
DOX, EDC and NHS | |||||||||
Epirubicin [71] | One-pot synthesis | Epirubicin | Epirubicin-AgNPs | AgNO3 | - | TEM: 36 | MTT | HepG2 liver cancer | 1.92 µg/mL |
Epirubicin | |||||||||
Paclitaxel [77] | RT | AgNPs | Vitamin C | - | - | MTT | HepG2 liver cancer | 58.32% | |
PEI | AgNO3 | ||||||||
PTX | AgNPs-PEI-PTX | PEI | - | TEM: >2 | |||||
PTX | |||||||||
Imatinib [40] | Biosynthesis | Eucalyptus procera leaves extract | Aqueous extract | Eucalyptus procera | - | - | MTT | MCF-7 breast cancer | 1.69 µM |
AgNPs | Aqueous extract | 438 | SEM: 60 | ||||||
AgNO3 | TEM: 20 | ||||||||
DLS: 63 | |||||||||
IMAB-AgNPs | IMAB | - | SEM: 105–210 | ||||||
AgNPs | DLS: 148 | ||||||||
Gemcitabine [59] | RT | AgNPs | AgNO3 | 395 ± 0.28 | DLS: 9.16 ± 0.28 | MTT | MDA-MB-453 breast cancer | 37.64 µM | |
NaBH4 | |||||||||
GEM | AgNPs stabilization | PVP | - | - | |||||
PVP | AgNPs | ||||||||
GEM-AgNPs | GEM | 411 ± 0.57 | DLS: 19.06 ± 0.50 | ||||||
AgNPs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials 2021, 11, 964. https://doi.org/10.3390/nano11040964
Gomes HIO, Martins CSM, Prior JAV. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials. 2021; 11(4):964. https://doi.org/10.3390/nano11040964
Chicago/Turabian StyleGomes, Helena I. O., Catarina S. M. Martins, and João A. V. Prior. 2021. "Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells" Nanomaterials 11, no. 4: 964. https://doi.org/10.3390/nano11040964
APA StyleGomes, H. I. O., Martins, C. S. M., & Prior, J. A. V. (2021). Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials, 11(4), 964. https://doi.org/10.3390/nano11040964