Exploiting of Green Synthesized Metal Oxide Nanoparticles for Spectrophotometric Determination of Levofloxacin, Cephalexin, and Cefotaxime Sodium in Commercial Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instruments
2.3. Preparation of Analytical Solutions
2.3.1. Preparation of Standard Solutions of LVX, CPX and CTX
2.3.2. Preparation of Tablet and Injection Samples
2.4. Preparation of M. spicata and M. domestica Extracts
2.5. Green Synthesis of NiONPs and MnO2NPs
2.6. General Analytical Procedure
General Analytical Procedure Using NiONPs and MnO2NPs
3. Results
3.1. Characterization of NiONPs and MnO2NPs
3.2. Optimum Experimental Conditions
3.2.1. Effect of Solvents on the Absorption Spectra
3.2.2. Volume of NiONPs and MnO2NPs
3.2.3. Effect of Temperature and Response Time
3.3. Absorption Spectra
3.4. Method Validation
3.5. Analytical Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morse, S.S. Factors in the emergence of infectious diseases. In Plagues and Politics; Price-Smith, A.T., Ed.; Global Issues Series; Palgrave Macmillan: London, UK, 2001; pp. 8–26. [Google Scholar] [CrossRef] [Green Version]
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone antibacterial: A review on chemistry, microbiology and therapeutic prospects. Acta Pol. Pharm. 2009, 66, 587–604. [Google Scholar] [PubMed]
- Shahbaz, K. Cephalosporins: Pharmacology and chemistry. Pharm. Biol. Eval. 2017, 4, 234–238. [Google Scholar] [CrossRef]
- LeFrock, J.L.; Prince, R.A.; Left, R.D. Mechanism of action, antimicrobial activity, pharmacology, adverse effects, and clinical efficacy of cefotaxime. Pharmacother. J. Human Pharmacol. Drug Therap. 1982, 2, 174–184. [Google Scholar] [CrossRef]
- El-Yazbi, A.F.; Khamis, E.F.; Youssef, R.M.; El-Sayed, M.A.; Aboukhalil, F.M. Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon 2020, 6, e04819. [Google Scholar] [CrossRef]
- Al-Talibi, E.S. Indirect spectrophotometric determination of cefalexin monohydrate, ceftriaxone sodium and cefotaxim sodium in pharmaceuticals using N-bromosuccinimde and evans blue dye. J. Educ. Sci. 2020, 29, 11–31. [Google Scholar]
- Kondaiah, S.; Chowdary, P.G.; Reddy, G.N.R.; Rao, V.S. Spectrophotometric determination studies of cefotaxime (CFX) and their CFX-Cd (II) and CFX-Cu (II) complexes. Orient. J. Chem. 2017, 33, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Li, Q.; Yang, J. A simple fluorescence method detection levofloxacin in milk based on GSH-CdTe QDs. J. Mol. Struct. 2020, 1201, 127175. [Google Scholar] [CrossRef]
- Saeed, A.M.; Salih, E.S. Indirect spectrofluorometric method for the determination of cefotaxime sodium, ciprofloxacin hydrochloride and famotidine in pharmaceuticals using bromate-bromide and acriflavine dye. Baghdad Sci. J. 2020, 17, 1–15. [Google Scholar]
- Stirbet, D.; Vasilescu, I.; Radu, G.L. Spectrofluorimetric analysis of cefotaxime sodium by using 4-fluoro-7-nitrobenzofurazan as derivatization agent. UPB Sci. Bul. Ser. B Chem. Mat. Sci. 2014, 76, 89–98. [Google Scholar]
- Liu, C.; Xie, D.; Liu, P.; Xie, S.; Wang, S.; Cheng, F.; Zhang, M.; Wang, L. Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Microchim. Acta 2019, 186, 1–10. [Google Scholar] [CrossRef]
- Ozkorucuklu, S.P.; Uka, B.; Baştemur, G.Y. Voltammetric analysis of cephalexin and cefazoline in pharmaceutical formulation and biological samples. J. Turk. Chem. Soc. 2019, 6, 217–224. [Google Scholar]
- Shahrokhian, S.; Rastgar, S. Construction of an electrochemical sensor based on the electrodeposition of Au–Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst 2012, 137, 2706–2715. [Google Scholar] [CrossRef]
- Aguilar-Carrasco, J.C.; Hernandez-Pineda, J.; Jimenez-Andrade, J.M.; Flores-Murrieta, F.J.; Carrasco-Portugal, M.D.C.; Lopez-Canales, J.S. Rapid and sensitive determination of levofloxacin in microsamples of human plasma by high-performance liquid chromatography and its application in a pharmacokinetic study. Biomed. Chromatogr. 2015, 29, 341–345. [Google Scholar] [CrossRef]
- Rao, A.L.; Prasanthi, T.; Spandana, U.S. Stability indicating RP-HPLC method development and validation for the analysis of cephalexin and bromhexine in pharmaceutical dosage form. Int. J. Res. Ayush Pharm. Sci. 2017, 1, 137–147. [Google Scholar]
- Al-Hakkani, M.F. HPLC analytical method validation for determination of cefotaxime in the bulk and finished pharmaceutical dosage form. Sust. Chem. Eng. 2020, 1, 33–42. [Google Scholar]
- Agberien, A.V.; Ormeci, B. Monitoring of cyanobacteria in water using spectrophotometry and first derivative of absorbance. Water 2020, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Duman, S.; Erbas, Z.; Soylak, M. Ultrasound-assisted magnetic solid phase microextraction of patent blue V on magnetic multiwalled carbon nanotubes prior to its spectrophotometric determination. Microchem. J. 2020, 159, 105468. [Google Scholar] [CrossRef]
- Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology: History and future. Human Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J. 2011, 19, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.; Tahira, A.; Solangi, A.; Mazzaro, R.; Ibupoto, Z.H.; Vomiero, A. A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Anal. Methods 2019, 11, 3578–3583. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, A.; Cai, F.; Tao, L.; Zhou, Y.; Zhao, Z.; Zhou, H. Nickel oxide nanoparticles for efficient hole transport in pin and nip perovskite solar cells. J. Mater. Chem. A 2017, 5, 6597–6605. [Google Scholar] [CrossRef]
- Gajengi, A.L.; Sasaki, T.; Bhanage, B.M. NiO nanoparticles catalyzed three component coupling reaction of aldehyde, amine and terminal alkynes. Catal. Commun. 2015, 72, 174–179. [Google Scholar] [CrossRef]
- Qian, G.; Zhang, Y.; Li, L.; Zhang, R.; Xu, J.; Cheng, Z.; Shen, Y. Single-crystal nickel-rich layered-oxide battery cathode materials: Synthesis, electrochemistry, and intra-granular fracture. Energy Stor. Mater. 2020, 27, 140–149. [Google Scholar] [CrossRef]
- Bano, S.; Nazir, S.; Munir, S.; AlAjmi, M.F.; Afzal, M.; Mazhar, K. Smart nickel oxide based core–shell nanoparticles for combined chemo and photodynamic cancer therapy. Int. J. Nanomed. 2016, 11, 3159. [Google Scholar]
- Karthik, K.; Radhika, D.; Sadasivuni, K.K.; Reddy, K.R. Nanostructured metal oxides and its hybrids for biomedical applications. Adv. Colloid. Interface Sci. 2020, 281, 102178. [Google Scholar]
- Chen, M.; Pan, Z.; Jin, X.; Chen, Z.; Zhong, Y.; Wang, X.; Zhang, Y. A highly integrated All-manganese battery with oxide nanoparticles supported on the cathode and anode by super-aligned carbon nanotubes. J. Mater. Chem. A 2019, 7, 4494–4504. [Google Scholar] [CrossRef]
- Fei, J.; Sun, L.; Zhou, C.; Ling, H.; Yan, F.; Zhong, X.; Liu, Z. Tuning the synthesis of manganese oxides nanoparticles for efficient oxidation of benzyl alcohol. Nanoscale Res. Lett. 2017, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chu, P.K.; He, J.; Hu, T.; Yang, M. Porous magnetic manganese oxide nanostructures: Synthesis and their application in water treatment. J. Colloid. Interface Sci. 2011, 359, 68–74. [Google Scholar] [CrossRef]
- Ding, B.; Zheng, P.; Ma, P.A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823. [Google Scholar] [CrossRef]
- Ahn, M.S.; Ahmad, R.; Yoo, J.Y.; Hahn, Y.B. Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water. J. Colloid Interface Sci. 2018, 516, 364–370. [Google Scholar] [CrossRef]
- Ahamed, A.J.; Kumar, P.V.; Karthikeyan, M. Wet chemical synthesis and characterization of NiO nanoparticles. Int. J. Nano. Corros. Sci. Eng. 2015, 2, 31–38. [Google Scholar]
- Ghosh, D.; Bhandari, S.; Khastgir, D. Synthesis of MnO2 nanoparticles and their effective utilization as UV protectors for outdoor high voltage polymeric insulators used in power transmission lines. Phys. Chem. Chem. Phys. 2016, 18, 32876–32890. [Google Scholar] [CrossRef]
- Teoh, L.G.; Li, K.D. Synthesis and characterization of NiO nanoparticles by sol–gel method. Mater. Trans. 2012, 53, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Shan, X.; Li, S.; Liu, H.; Wu, X.; Chen, Y. Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods. Mater. Letter. 2014, 132, 317–321. [Google Scholar] [CrossRef]
- Farhadi, S.; Roostaei-Zaniyani, Z. Preparation and characterization of NiO nanoparticles from thermal decomposition of the [Ni (en)3] (NO3)2 complex: A facile and low-temperature route. Polyhedron 2011, 30, 971–975. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, J.; Yu, X.; Zhao, H.; Sun, C.; Zhou, Z.; Ying, Y.; Tan, L. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 2020, 502, 144171. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 1–24. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; De la Guardia, M. Green analytical chemistry. TrAC Trend. Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Ortega, F.; Arce, V.B.; Garcia, M.A. Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent. Carbohydr. Polym. 2021, 252, 117208. [Google Scholar] [CrossRef]
- Krishna, P.G.; Ananthaswamy, P.P.; Trivedi, P.; Chaturvedi, V.; Mutta, N.B.; Sannaiah, A.; Erra, A.; Yadavalli, T. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Mater. Sci. Eng. C 2017, 75, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Annu, A.A.; Ahmed, S. Green synthesis of metal, metal oxide nanoparticles, and their various applications. In Handbook of Ecomaterials; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–45. [Google Scholar]
- Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Biosynthesis of metal and metal oxide nanoparticles. Chem. Bio. Eng. Rev. 2016, 3, 55–67. [Google Scholar] [CrossRef]
- Manoj, D.; Saravanan, R.; Santhanalakshmi, J.; Agarwal, S.; Gupta, V.K.; Boukherroub, R. Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor. Sensor. Actuat. B 2018, 266, 873–882. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, K.; Panwar, S.; Mehta, S.K. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int. Nano Lett. 2017, 7, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Hoseinpour, V.; Souri, M.; Ghaemi, N. Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro. Nano Lett. 2018, 13, 1560–1563. [Google Scholar] [CrossRef]
- Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B Biol. 2018, 180, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Beitollai, H.; Nejad, F.G.; Tajik, S.; Jahani, S.; Biparva, P. Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles. Int. J. Nano Dimens. 2017, 8, 197–205. [Google Scholar]
- Zheng, Y.; Huang, Y.; Shi, H.; Fu, L. Green biosynthesis of ZnO nanoparticles by plectranthus amboinicus leaf extract and their application for electrochemical determination of norfloxacin. Inorg. Nano Met. Chem. 2019, 49, 277–282. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraj, N.; Prabu, P.; Nagarajan, S.; Kim, C.H.; Park, J.H.; Kim, H.Y. Synthesis of nickel oxide nanoparticles using nickel acetate and poly (vinyl acetate) precursor. Mater. Sci. Eng. 2006, 128, 111–114. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R. Physicochemical parameter influences and their optimization on the biosynthesis of MnO2 nanoparticles using Vernonia amygdalina leaf extract. Arab. J. Chem. 2020, 13, 6472–6492. [Google Scholar] [CrossRef]
- Goyal, M.; Singh, M. Size and shape dependence of optical properties of nanostructures. Appl. Phys. A 2020, 126, 1–8. [Google Scholar] [CrossRef]
- Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Darroudi, M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J. Mol. Struct. 2018, 1173, 931–936. [Google Scholar] [CrossRef]
- Kumar, A.S.R.; Kishore, N.; Budhiraja, N. Preparation and characterization of NiO nanoparticles by Co-Precipitation method. Int. J. Eng. Appl. Manag. Sci. Paradig. 2013, 6, 64–67. [Google Scholar]
- Mahmoud, A.M.; Ibrahim, F.A.; Shaban, S.A.; Youssef, N.A. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt. J. Pet. 2015, 24, 27–35. [Google Scholar] [CrossRef] [Green Version]
- El-kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles, Synthesis and spectral studies of interactions with glucose. Mat. Sci. Semcond. Proc. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Jaganyi, D.; Altaf, M.; Wekesa, I. Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Appl. Nanosci. 2013, 3, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.S.; Patra, A. Green synthesis of MnO2 nanorods using Phyllanthus amarus plant extract and their fluorescence studies. Green Process. Synth. 2017, 6, 549–554. [Google Scholar] [CrossRef]
- Qiao, H.; Wei, Z.; Yang, H.; Zhu, L.; Yan, X. Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J. Nanomater. 2009, 2009, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shaker, K.S.; AbdAlsalm, A.H. Synthesis and characterization nano structure of MnO2 via chemical method. Eng. Technol. J. 2018, 36, 946–950. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Hameed, S.; Munir, A.; Kanwal, S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem. 2019, 33, e4950. [Google Scholar] [CrossRef]
- Liu, X.M.; Fu, S.Y.; Huang, C.J. Synthesis, characterization and magnetic properties of β-MnO2 nanorods. Powder Technol. 2005, 154, 120–124. [Google Scholar] [CrossRef]
- ICH-Q2 (R1) Validation and Analytical Procedures: Text and Methodology. In Proceedings of the International Conference on Harmonization guidelines, Geneva, Switzerland, 8–15 November 2005.
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 3rd ed.; Ellis Horwood PTR Prentice Hall: New York, NY, USA, 1993. [Google Scholar]
- Desai, V.N.; Afieroho, O.E.; Dagunduro, B.O.; Okonkwo, T.J.; Ndu, C.C. A simple UV spectrophotometric method for the determination of levofloxacin in dosage formulations. Trop. J. Pharm. Res. 2011, 10, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Ahmad, J.; Jan, M.N.; Gulab, H.; Idrees, M. Development and validation of a new spectrophotometric method for the determination of cephalexin monohydrate in pure form and pharmaceutical formulations. J. Braz. Chem. Soc. 2016, 27, 912–918. [Google Scholar] [CrossRef]
- Bushra, M.U.; Akter, N.; Hassan, M.R.; Islam, A.; Hossain, M.R. Development and validation of a simple UV spectrophotometric method for the determination of cefotaxime sodium in bulk and pharmaceutical formulation. IOSR J. Pharm. 2014, 4, 74–77. [Google Scholar]
Parameters | LVX | CPX | CTX |
---|---|---|---|
Wavelength (nm) | 290 | 262 | 235 |
Volume of added nanoparticles | |||
NiONPs | 0.2 mL | 0.6 mL | 0.4 mL |
MnO2NPs | 2.0 mL | 1.0 mL | 1.5 mL |
Temperature °C | 25 | 25 | 25 |
Response Time (min) | 3 | 6 | 5 |
Samples | λmax (nm) | Beer’s Law Limit (µg mL−1) | Molar Absorbitivity (L. mol−1.cm−1) | Sandell’s Sensitivity (µg/cm2/0.001 Absorbance Unit) | Correlation Coefficient, (r) | Standard Deviation of Slope (Sb) | Standard Deviation of Intercept (Sa) | % SE * |
---|---|---|---|---|---|---|---|---|
LVX-NiONPs | 290 | 0.1–20 | 17.9 × 103 | 0.0203 | 0.9986 | 0.00074 | 0.00628 | 0.15 |
CPX-NiONPs | 262 | 1.0–80 | 11.6 × 103 | 0.0311 | 0.9999 | 0.00068 | 0.02809 | 0.05 |
CTX-NiONPs | 235 | 0.001–100 | 14.5 × 103 | 0.0033 | 0.9995 | 0.000311 | 0.013934 | 0.04 |
LVX-MnO2NPs | 290 | 0.01–60 | 16.8 × 103 | 0.0221 | 0.9974 | 0.00135 | 0.03609 | 0.08 |
CPX-MnO2NPs | 262 | 0.1–160 | 5.9 × 103 | 0.0610 | 0.9995 | 0.00016 | 0.01248 | 0.03 |
CTX-MnO2NPs | 235 | 0.01–80 | 15.3 × 103 | 0.031 | 0.9998 | 0.00025 | 0.009233 | 0.02 |
Samples | Accuracy (n = 9) | Intra-Day (n = 3) | Inter-Day (n = 3) | Repeatability (RSD %, n = 6) | Robustness | Ruggedness |
---|---|---|---|---|---|---|
LVX-NiONPs | 99.27 ± 1.4 | 1.3%, 1.7% and 1.5% | 0.4%, 0.2% and 0.1% | 0.6 | 99.38 ± 0.6 | 98.56 ± 0.8 |
CPX-NiONPs | 99.59 ± 0.4 | 0.7%, 0.7% and 0.6% | 1.5%, 1.6% and 1.3% | 0.3 | 99.82 ± 0.7 | 98.52 ± 0.5 |
CTX- NiONPs | 99.07 ± 0.8 | 0.5%, 0.6% and 0.6% | 0.7%, 0.9% and 1.0% | 1.1 | 98.89 ± 1.2 | 98.76 ± 0.7 |
LVX-MnO2NPs | 99.77 ± 0.5 | 0.4%, 0.4% and 0.6% | 1.1%, 1.2% and 1.4% | 0.7 | 98.94 ± 0.8 | 99.23 ± 1.1 |
CPX-MnO2NPs | 99.32 ± 0.7 | 0.9%, 0.8% and 0.7% | 1.1%, 1.2% and 1.4% | 0.3 | 99.45 ± 0.7 | 98.85 ± 0.6 |
CTX- MnO2NPs | 99.17 ± 0.7 | 0.6%, 0.6% and 0.8% | 0.9%,0.8% and 1.0% | 0.8 | 99.85 ± 0.3 | 98.47 ± 0.6 |
Interference | LVX Tolerable Values | CPX Tolerable Values | CTX Tolerable Values | |||
---|---|---|---|---|---|---|
NiONPs | MnO2NPs | NiONPs | MnO2NPs | NiONPs | MnO2NPs | |
Lactose | 100 | 200 | 80 | 100 | 100 | 140 |
Povidone | 400 | 420 | 200 | 200 | 250 | 300 |
Microcrystalline cellulose | 300 | 200 | 100 | 200 | 100 | 180 |
Magnesium stearate | 600 | 600 | 400 | 300 | 300 | 340 |
Anhydrous colloidal silica | 750 | 680 | 560 | 600 | 420 | 510 |
Red ferric oxide | 800 | 700 | 600 | 580 | 350 | 200 |
Titanium dioxide | 200 | 300 | 120 | 100 | 250 | 150 |
Samples | Taken Conc. Range (µg mL−1) | Found Range (µg mL−1) | % Recovery | Mean ± SD | n | Variance | %SE | % RSD |
---|---|---|---|---|---|---|---|---|
LVX-NiONPs | 0.1–20 | 0.1–19.66 | 97.9–100.66 | 99.36 ± 0.9 | 7 | 0.81 | 0.34 | 0.91 |
CPX-NiONPs | 1.0–80 | 1.0–79.25 | 99.0–100.5 | 99.53 ± 0.6 | 7 | 0.36 | 0.23 | 0.60 |
CTX- NiONPs | 1.0–80 | 0.995–97.31 | 97.8–100.1 | 98.94 ± 0.8 | 7 | 0.64 | 0.30 | 0.81 |
LVX-MnO2NPs | 0.1–60 | 0.099–59.85 | 99.0–100.5 | 99.70 ± 0.7 | 7 | 0.49 | 0.26 | 0.70 |
CPX-MnO2NPs | 1.0–160 | 1.0–158.22 | 98.9–100.5 | 99.64 ± 0.6 | 7 | 0.36 | 0.23 | 0.60 |
CTX- MnO2NPs | 1.0–80 | 0.991–97.02 | 98.0–100.3 | 99.24 ± 0.8 | 7 | 0.64 | 0.30 | 0.81 |
Samples | Taken (µg mL−1) | Found (µg mL−1) | % Recovery | Mean ± SD | n | Variance | % SE | % RSD | Reference Method [69,70,71] | t-Test (2.228) * | F-Test (5.05) * |
---|---|---|---|---|---|---|---|---|---|---|---|
LVX-NiONPs | 2.0–20 | 1.98–19.95 | 99.0–100.5 | 99.64 ± 0.6 | 6 | 0.32 | 0.23 | 0.57 | 99.43 ± 0.9 | 0.482 | 2.53 |
LVX-MnO2NPs | 1.0–60 | 0.99–59.6 | 99.0–100.0 | 99.60 ± 0.4 | 6 | 0.16 | 0.16 | 0.40 | 0.682 | 4.00 | |
CPX-NiONPs | 5.0–80 | 5.0–79.8 | 98.0–100.0 | 99.33 ± 0.7 | 6 | 0.49 | 0.29 | 0.70 | 99.28 ± 0.6 | 0.341 | 1.31 |
CPX-MnO2NPs | 10–160 | 9.98–158.5 | 98.8–100.0 | 99.48 ± 0.4 | 6 | 0.16 | 0.16 | 0.40 | 0.693 | 2.25 | |
CTX-NiONP | 5.0–80 | 4.96–79.34 | 99.2–100.6 | 99.67 ± 0.6 | 6 | 0.36 | 0.24 | 0.60 | 99.03 ± 0.7 | 1.724 | 1.00 |
CTX-MnO2NPs | 5.0–80 | 5.02–79.21 | 97.8–100.4 | 99.18 ± 0.8 | 6 | 0.64 | 0.33 | 0.81 | 0.341 | 1.306 |
Analytical Techniques | Reagent | Linear conc. Range µg mL−1 | LOD | Reference |
---|---|---|---|---|
Spectrophotometry | LVX, Methanolic solution of perchloric acid | 2.5–20 | 0.8 µg mL−1 | [6] |
CPX, Oxidation using excess amount of N-bromosuccinimide | 1.0–9.0 | 0.023 µg mL−1 | [7] | |
CTX, Metal Cu (II) complex | 20–140 | -- | [8] | |
Fluorescence | LVX, Electron transfer mechanism quenched the fluorescence of GSH-CdTe QDs | 0.73–7.30 | 1.53 ng mL−1 | [9] |
CTX, Bromate-bromide and, acriflavine as fluorescent dye | 0.1–3.0 | 0.013 | [10] | |
Electrochemical | LVX, Nanocomposite of silver nanoparticles on a thin and porous nickel oxide film. | 0.25–100 µM | -- | [12] |
CPX, Disposable graphite electrode | 0.5–4.0 mM | 0.12 µM | [13] | |
CTX, A multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode | 0.004–10.0 µM | 1.0 nM | [14] | |
Chromatography | LVX, Acetonitrile and 0.01 M potassium dihydrogen aqueous solution (pH 3.4; 14:86 v/v) | 0.1–12 | 0.05 | [15] |
CPX, OPA: Acetonitrile (30:70 v/v) | 100–500 | 0.357 | [16] | |
CTX, Methanol:Phosphate buffer (1000:130 v/v) | 0.5–1.5 | 35.5 ng mL−1 | [17] | |
Proposed method | Spectrophotometric measurement in the presence of NiONPs and MnO2NPs | 0.1–20 | 0.07 | LVX |
1.0–80 | 0.09 | CPX | ||
0.001–100 | 0.0005 | CTX |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarfaj, N.A.; Al-Onazi, W.A.; Al-Mohaimeed, A.M.; El-Tohamy, M.F.; Alabdulmonem, H.A. Exploiting of Green Synthesized Metal Oxide Nanoparticles for Spectrophotometric Determination of Levofloxacin, Cephalexin, and Cefotaxime Sodium in Commercial Products. Nanomaterials 2021, 11, 1099. https://doi.org/10.3390/nano11051099
Alarfaj NA, Al-Onazi WA, Al-Mohaimeed AM, El-Tohamy MF, Alabdulmonem HA. Exploiting of Green Synthesized Metal Oxide Nanoparticles for Spectrophotometric Determination of Levofloxacin, Cephalexin, and Cefotaxime Sodium in Commercial Products. Nanomaterials. 2021; 11(5):1099. https://doi.org/10.3390/nano11051099
Chicago/Turabian StyleAlarfaj, Nawal Ahmed, Wedad Altuhami Al-Onazi, Amal Mohammed Al-Mohaimeed, Maha Farouk El-Tohamy, and Hadeel Abdulaziz Alabdulmonem. 2021. "Exploiting of Green Synthesized Metal Oxide Nanoparticles for Spectrophotometric Determination of Levofloxacin, Cephalexin, and Cefotaxime Sodium in Commercial Products" Nanomaterials 11, no. 5: 1099. https://doi.org/10.3390/nano11051099
APA StyleAlarfaj, N. A., Al-Onazi, W. A., Al-Mohaimeed, A. M., El-Tohamy, M. F., & Alabdulmonem, H. A. (2021). Exploiting of Green Synthesized Metal Oxide Nanoparticles for Spectrophotometric Determination of Levofloxacin, Cephalexin, and Cefotaxime Sodium in Commercial Products. Nanomaterials, 11(5), 1099. https://doi.org/10.3390/nano11051099