Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Reagents
2.3. Preparation of Adsorbents
2.3.1. Preparation of P(acrylonitrile-co-styrene) Nanocomposites
2.3.2. Preparation of Sulfonated P(AN-co-St) Nanocomposites
2.3.3. Preparation of MWCNTs
2.4. Purification and Functionalization of MWCNTs
2.5. Batch Adsorption Experimental Run
2.6. Characterization of Nanocomposites
2.7. Adsorption Equilibrium Isotherm
2.7.1. Langmuir and Freundlich Models
2.7.2. Temkin Isotherm Model
2.7.3. The Halsey Isotherm Model
3. Results and Discussion
3.1. Characterization of Adsorbents
3.1.1. FTIR Analysis
3.1.2. Scanning Electron Microscopy (SEM) Analysis
3.1.3. Particle Size Distribution Analysis (PSD)
3.1.4. Raman Spectral Analysis
3.2. Optimization of Various Parameters
3.2.1. Initial MO Concentration
3.2.2. Effect of the Adsorbent Amount on the Percentage of MO Removal
3.2.3. Effect of pH
3.2.4. Effect of Contact Time
3.2.5. Effect of Temperature
3.3. Adsorption Isotherm Studies
Comparative Analysis of the Sorption Capacity of Different Composites
3.4. Kinetic Study of MO Adsorption Process (Adsorbent Rate Constant)
3.5. Reusability Study of MO Dye
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elzain, A.A.; El-Aassar, M.R.; Hashem, F.S.; Mohamed, F.M.; Ali, A.S.M. Removal of methylene dye using composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials. J. Mol. Liq. 2019, 291, 111335. [Google Scholar] [CrossRef]
- Alprol, A.E.; Gaballah, M.S.; Hassaan, M.A. Micro and Nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Reg. Stud. Mar. Sci. 2021, 42, 101625. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Hassan, H.S.; Elkady, M.F.; Masoud, M.S.; Elzain, A.A. Isothermal, kinetic, and thermodynamic studies on copper adsorption on modified styrene acrylonitrile copolymer. Int. J. Environ. Sci. Technol. 2019, 16, 7037–7048. [Google Scholar] [CrossRef]
- Rao, M.M.; Liu, J.S.; Li, W.S.; Liang, Y.; Liao, Y.H.; Zhao, L.Z. Performance improvement of poly (acrylonitrile-vinyl acetate) by activation of poly (methyl methacrylate). J. Power Sources 2009, 189, 711–715. [Google Scholar] [CrossRef]
- Hasan, I.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. L-Ascorbic Acid-g-Polyaniline Mesoporous Silica Nanocomposite for Efficient Removal of Crystal Violet: A Batch and Fixed Bed Breakthrough Studies. Nanomaterials 2020, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Wang, G.Z.; Li, W.S.; Li, G.L.; Tan, C.L.; Rao, M.M.; Liao, Y.H. Preparation and performances of porous polyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries. J. Power Sources 2008, 184, 477–480. [Google Scholar] [CrossRef]
- Touheed, A.; Maab, H. Preparation and Characterization of Sulfonated Polyacrylamide from Polyacrylonitrile for Proton Conductive Membranes. J. Chin. Chem. Soc. Taipei 2012, 1541–1547. [Google Scholar] [CrossRef]
- Al Prol, A.E. Study of Environmental Concerns of Dyes and Recent Textile Effluents Treatment Technology: A Review. Asian J. Fish. Aquat. Res. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Prol, A.; Azzem, M.; Amer, A.; El-Metwally, M.; El-Hamid, H.; El–Moselhy, K. Adsorption of Cadmium (II) Ions (II) from Aqueous Solution onto Mango Leaves. Asian J. Phys. Chem. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Mohy Eldin, M.S.; Abu-Saied, M.A.; Tamer, T.M.; Youssef, M.E.; Hashem, A.I.; Sabet, M.M. Development of polystyrene based nanoparticles ions exchange resin for water purification applications. Desalination Water Treat. 2016, 57, 14810–14823. [Google Scholar] [CrossRef]
- Moselhy, K.M.E.; Azzem, M.A.; Amer, A.; Al Prol, A.E. Adsorption of Cu (II) and Cd (II) from Aqueous Solution by Using Rice Husk Adsorbent. Phys. Chem. Indian J. 2017, 12, 1–13. [Google Scholar]
- Cavallaro, G.; Lazzara, G.; Rozhina, E. RSC Advances Organic-nanoclay composite materials as removal agents for environmental decontamination. RSC Adv. 2019, 40553–40564. [Google Scholar] [CrossRef] [Green Version]
- Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ghfar, A.A. Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th (IV) Metal Ions from Aqueous Environment. ACS Appl. Mater. Interfaces 2017, 9, 36026–36037. [Google Scholar] [CrossRef]
- Elzain, A.A.; Elkady, M.F. Synthesis, optimization, and characterization of poly (Styrene- co- Acrylonitrile) copolymer prepared via precipitation polymerization. Adv. Polym. Technol. 2018, 37, 2021–2029. [Google Scholar]
- El-Aassar, M.R.; El-Kady, M.F.; Hassan, H.S.; Al-Deyab, S.S. Synthesis and characterization of surface modified electrospun poly (acrylonitrile-co-styrene) nanofibers for dye decolorization. J. Taiwan Inst. Chem. Eng. 2016, 58, 274–282. [Google Scholar] [CrossRef]
- Elkady, M.F.; El-Aassar, M.R.; Hassan, H.S. Adsorption profile of basic dye onto novel fabricated carboxylated functionalized co-polymer nanofibers. Polymers 2016, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirmardi, M.; Mahvi, A.H.; Hashemzadeh, B. The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean J. Chem. Eng. 2013, 30, 1603–1608. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, Y.; Yang, G.; Liu, M.; Zhu, G.; Sheng, X. Applied Clay Science Mussel-inspired fabrication of halloysite nanotube-based magnetic composites as catalysts for highly efficient degradation of organic dyes. Appl. Clay Sci. 2020, 198, 105835. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Razak, A.A.A.; Al-timimi, D.A.H. Modified Multiwalled Carbon Nanotubes for Treatment of Some Organic Dyes in Wastewater. Adv. Mater. Sci. Eng. 2014, 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.M.; Bergmann, C.P.; Lima, E.C.; Adebayo, M.A.; Fagan, S.B. Adsorption of a textile dye from aqueous solutions by carbon nanotubes. Mater. Res. 2014, 17, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; He, B.; Xu, F.; Chen, X. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 2011, 170, 82–89. [Google Scholar]
- Zare, K.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Maazinejad, B.; Ali, V.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq. 2015, 212, 266–271. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, C.; Dichiara, A.B.; Jiang, W.; Gu, J. Cellulose Nanofibril/Carbon Nanomaterial Hybrid Aerogels for Adsorption Removal of Cationic and Anionic Organic Dyes. Nanomaterials 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Bahgat, M.; Farghali, A.A.; Rouby, W.M.A.E.; Khedr, M.H. Journal of Analytical and Applied Pyrolysis Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J. Anal. Appl. Pyrolysis 2011, 92, 307–313. [Google Scholar] [CrossRef]
- Eldeeb, T.M.; El, A.; Khedr, M.H.; El-dek, S.I. Novel three-dimensional chitosan-carbon nanotube–PVA nanocomposite hydrogel for removal of Cr 6 + from wastewater. Desalination Water Treat. 2020, 184, 25366. [Google Scholar]
- Ghoneim, M.M.; El-Desoky, H.S.; El-Moselhy, K.M.; Amer, A.; Abou El-Naga, E.H.; Mohamedein, L.I.; Al-Prol, A.E. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 2014, 40, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part II.-Liquids. J. Frankl. Inst. 1917, 184, 721. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem 1906, 57, 1100–1107. [Google Scholar]
- Halsey, G. Physical adsorption on non-uniform surfaces. J. Chem. Phys. 1948, 16, 931–937. [Google Scholar] [CrossRef]
- Konicki, W.; Mijowska, E.; Jasin, I. Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe 3 C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 2012, 210, 87–95. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, R.; Nayak, A.; Saleh, A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 194, 24–34. [Google Scholar]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Bioresource technology adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef] [PubMed]
- Amuda, O.S.; Olayiwola, A.O.; Alade, A.O. Adsorption of Methylene Blue from Aqueous Solution Using Steam-Activated Carbon Produced from Lantana camara Stem. J. Environ. Prot. 2014, 5, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Abu-Saied, M.A.; Abdel-Halim, E.S.; Fouda, M.M.G.; Al-deyab, S.S. Preparation and Characterization of Iminated Polyacrylonitrile for the Removal of Methylene Blue from Aqueous Solutions. Int. J. Electrochem. Sci. 2013, 8, 5121–5135. [Google Scholar]
- Bazrafshan, E.; Mostafapour, F.K.; Hosseini, A.R.; Raksh Khorshid, A.; Mahvi, A.H. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J. Chem. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- El-hamid, H.T.A.; Al-prol, A.E.; Hafiz, M.A. Plackett-Burman and Response Surface Methodology for Optimization of Oily Wastewater Bioremediation by Aspergillus sp. South Asian J. Res. Microbiol. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Hashem, F.S. Removal of Methylene Blue by Magnetite-Covered Bentonite Nano-Composite. Chem. Bull. 2013, 2013, 524–529. [Google Scholar]
- Nayl, A.A.; Abd-elhamid, A.I.; Abu-saied, M.A. A novel method for highly e ff ective removal and determination of binary cationic dyes in aqueous media using a cotton–graphene oxide composite. RSC Adv. 2020, 7791–7802. [Google Scholar] [CrossRef] [Green Version]
- El-bindary, A.A.; Hussien, M.A.; Diab, M.A.; Eessa, A.M. Adsorption of Acid Yellow 99 by polyacrylonitrile / activated carbon composite: Kinetics, thermodynamics and isotherm studies. J. Mol. Liq. 2014, 197, 236–242. [Google Scholar] [CrossRef]
- Özacar, M.; Şengil, I.A. Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazard. Mater. 2003, 98, 211–224. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Ray, M.; Guha, A.K. Mechanistic studies on the binding of Acid Yellow 99 on coir pith. Bioresour. Technol. 2011, 102, 2394–2399. [Google Scholar] [CrossRef] [PubMed]
- Uteu, D.Ş.; Zaharia, C.; Rusu, G. Reactive dye removal from aqueous solution by sorption on modified ash reactive dye removal from aqueous solution by sorption on modified ash. Cercet. Agron. Mold. 2010, XLIII, 59–65. [Google Scholar]
- Eldin, M.S.M.; Elsakka, S.; El-Masry, M.M.; Gaward, I.I.A. Methylene blue removal by nano-poly acrylonitrile particles: Modelling and formulation studies Methylene blue removal by nano-polyacrylonitrile particles: Modelling and formulation studies. Desalination Water Treat. 2020, 178, 322–366. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 2007, 145, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, O.; El Nemr, A.; El-Sikaily, A.; Khaled, A. Use of Rice Husk for Adsorption of Direct Dyes From Aqueous Solution: A Case Study of Direct F. Scarlet. Egypt. J. Aquat. Res. 2005, 31, 1–11. [Google Scholar]
- Sheen, O.P. utilization of mango leaf as low-cost adsorbent for the removal of cu(ii) ion from aqueous solution. MSC 2011, 11, 10–14. [Google Scholar]
- Volesky, B.; Schiewer, S. Biosorption, Metals. Encycl. Bioprocess. Technol. 2002, 1–47. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Pearson, S.; Pardesi, C. Kinetic and Thermodynamic Parameters for the Adsorption of Methylene Blue Using Fly Ash under Batch, Column, and Heap Leaching Configurations. Coal Combust. Gasif. Prod. 2018, 11, 22–33. [Google Scholar]
- Eldin, M.S.M.; Soliman, E.A.; Elzatahry, A.A.F.; Elaassar, M.R.; Elkady, M.F.; Rahman, A.M.A.; Yossef, M.E.; Eweida, B.Y. Preparation and characterization of imino diacetic acid functionalized alginate beads for removal of contaminants from waste water: I. Methylene blue cationic dye model. Desalination Water Treat. 2012, 40, 15–23. [Google Scholar] [CrossRef]
- Wiener, J.; Ntaka, S.; Ngcobo, P.S.; Knížek, R. Sorption Process Using Polyamide Nanofibres to Remove Dye from Simulated Wastewater. In Proceedings of the NANOCON 2010-2nd International Conference, Olomouc, Czech Republic, 12–14 October 2010; pp. 476–479. [Google Scholar]
- Darnall, D.W.; Greene, B.; Hosea, M.; McPherson, R.A.; Henzl, M.; Alexander, M.D. Trace Metal Removal from Aqueous Solution; Thompson, R., Ed.; Royal Society of Chemistry: London, UK, 1986. [Google Scholar]
- Nemr, A.; El-sikaily, A.; Khaled, A. Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt. J. Aquat. Res. 2010, 36, 403–425. [Google Scholar]
- Al Prol, A.E.; El-Metwally, M.E.A.; Amer, A. Sargassum latifolium as eco-friendly materials for treatment of toxic nickel (II) and lead (II) ions from aqueous solution. Egypt. J. Aquat. Biol. Fish. 2019, 23, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Veisi, P. High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. J. Environ. Chem. Eng. 2018, 6, 4634–4643. [Google Scholar] [CrossRef]
- Lane, L.A.; Qian, X.; Smith, A.M.; Nie, S. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo. Annu. Rev. Phys. Chem. 2015, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Mahanpoor, K.; Moradi, O. RSC Advances Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: Critical review. RSC Adv. 2017, 47083–47090. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, J.N.; Mahesh, K.; Le, N.H.; Kemp, K.C.; Timilsina, R.; Tiwari, R.N.; Kim, K.S. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 2013, 56, 173–182. [Google Scholar] [CrossRef]
- Özacar, M.; Sengil, I.A. Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids Surf. A Physicochem. Eng. Asp. 2004, 242, 105–113. [Google Scholar] [CrossRef]
- Eid, A.; Prol, A. Adsorption and Bioremediation as Technologies of Wastewater Treatment. Ph.D. Thesis, School of Chemical, University of Almonifia, Tanta, Egypt, 2017. [Google Scholar]
- Eldin, M.S.M.; Aggour, Y.A.; Elaassar, M.R.; Beghet, G.E.; Atta, R.R. Development of nano-crosslinked polyacrylonitrile ions exchanger particles for dye removal: Kinetic, isotherm, and thermodynamic studies. Desalination Water Treat. 2020, 175, 24911. [Google Scholar]
Chemical Formula | C15H15N3O2 |
---|---|
Molecular mass (g mol−1) | 269.30 g mol−1 |
Maximum wavelength | 480 nm |
Uses | Textile |
Melting point | 179–182 °C |
Density | 0.791 g cm3 |
pH | pH 4.2: pink, pH 5.5: orange pH 6.2: yellow |
Molecular Structure |
Polymer | Angle | Mean (nm) | P.L | Diff. Coef (m² s−1) | Counts/s | Baseline Error |
---|---|---|---|---|---|---|
P(AN-co-St) | 11.1° | 56.6 | 0.745 | 7.57 × 10−12 | 1.60 × 100.06 | 2.84% |
SP(AN-co-St) | 241.4 | −43.616 | 1.77× 10−12 | 3.59 × 100.06 | 0.29% | |
P(AN-co-St)/MWCNTs | 294.0 | −63.915 | 4.31 × 10−13 | 4.52 × 100.05 | 1.87% |
Materials | Wavenumber (cm−1) | Assignment |
---|---|---|
P (AN-co-St) | 410 | υ(Xmetal–O) |
650 | υ(C–S) aliphatic | |
810, 965 | υ(C–O–C) | |
1090 (w) | υ(C–S) aromatic | |
1070, 1150 | υ(C=S) | |
1450 (w) | υ(C–C) aromatic ring | |
1360 (w) | δ(CH3) | |
1680 (w) | υ(C=N) | |
SP(AN-co-St) | 410 | υ(Xmetal–O) |
1000, 1100, 1220 (w) | υ(C=S) | |
1650 | υ(C=N) | |
2240 | υ(C≡C) | |
2850 | υ(C−H) | |
P(AN-co-St)/MWCNT | 410 | υ(Xmetal–O) |
640, 720 | υ(C–S) aliphatic | |
830, 910 | υ(C–O–C) | |
1085 | υ(C–S) aromatic | |
1000 | υ(C=S) | |
1000 | υ(C–C) aromatic ring | |
1380 | δ(CH3) | |
1620 | υ(C=N) | |
1750 | υ(C=C) | |
1806 | υ(C=O) | |
2000 | υ(C≡C) | |
3100 | υ(O–H) |
Isotherm Model | Parameters | P(AN-co-St) | SP(AN-co-St) | P(AN-co-St)/MWCNTs |
---|---|---|---|---|
Langmuir | R2 | 0.990 | 0.996 | 0.998 |
qmax (mg g−1) | 47.84 | 48.78 | 121.95 | |
b (L mg−1) | 4.54 | 6.21 | 2 | |
RL | 0.00499 | 0.0036 | 0.011 | |
Freundlich | R2 | 0.947 | 0.961 | 0.991 |
n | 6.1 | 1.6 | 1.66 | |
Kf (mg g−1) | 30.9 | 45.6 | 63.09 | |
Temkin | R2 | 0.931 | 0.999 | 0.977 |
A (L g−1) | 17.63 | 0.97 | 3.85 | |
B(mg L−1) | 56.23 | 36.89 | 57.1 | |
bT | 0.0005 | 0.00076 | 0.00049 | |
Halsey isotherm | R2 | 0.996 | 0.961 | 0.991 |
1/n | 1.565 | 0.625 | 123.84 | |
K | 196.7 | 72.86 | 0.601 |
Adsorbent Used for Adsorption | Dye | Sorption Capacity (mg g−1) | References |
---|---|---|---|
Poly (AN-co-St) NFs | Methylene blue | 15.84 | [1] |
MWCNTs | Malachite green | 142.85 | [17] |
MWCNTs | Methyl orange | 18.95 | [54] |
Carbon nanotubes | Methylene blue | 35.4 | [21] |
Carbon nanotubes | Methylene blue | 103.62 | [55] |
Nano poly acrylonitrile particles | Methylene Blue | 8.7600 | [43] |
MWCNTs | Methyl orange | 5.181 | [56] |
Poly (AN-co-St)/graphite NFs | Methylene blue | 18.73 | [1] |
GO hydrogel | Rhodamine B (RhB), | 7.85 | [57] |
Poly (AN-co-St)/CNTs NFs | Methylene blue | 23.55 | [1] |
Poly iminated polyacrylonitrile | Methylene Blue | 54 | [34] |
P(AN-co-St) | Methyl orange | 47.84 | This study |
SP(AN-co-St) | Methyl orange | 48.78 | This study |
P(AN-co-St)/MWCNTs | Methyl orange | 121.95 | This study |
Model | 1st-Order Kinetic Model | 2nd-Order Kinetic Model | ||||
---|---|---|---|---|---|---|
Parameters | R2 | k1 (1 min−1) | qe (calc.) (mg g−1) | R2 | k2 (g mg−1 min−1) | qe (calc.) (mg g−1) |
P(AN-co-St) | 0.167 | 0.0432 ± 0.01 | 61.53 ± 5.67 | 0.997 | 347.23 ± 23.48 | 0.00288 ± 0.001 |
SP(AN-co-St) | 0.67 | 0.07 ± 0.01 | 39.62 ± 7.01 | 0.997 | 0.01 ± 0.001 | 107.67 ± 12.02 |
P(AN-co-St)/MWCNT | 0.66 | 7.599 × 10−3 ± 91.00 | 1.33 ± 0.21 | 0.999 | 1768.05 ± 86.00 | 0.00056 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Mansour, A.T.; Ashour, M. Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye. Nanomaterials 2021, 11, 1144. https://doi.org/10.3390/nano11051144
Abualnaja KM, Alprol AE, Abu-Saied MA, Mansour AT, Ashour M. Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye. Nanomaterials. 2021; 11(5):1144. https://doi.org/10.3390/nano11051144
Chicago/Turabian StyleAbualnaja, Khamael M., Ahmed E. Alprol, M. A. Abu-Saied, Abdallah Tageldein Mansour, and Mohamed Ashour. 2021. "Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye" Nanomaterials 11, no. 5: 1144. https://doi.org/10.3390/nano11051144
APA StyleAbualnaja, K. M., Alprol, A. E., Abu-Saied, M. A., Mansour, A. T., & Ashour, M. (2021). Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye. Nanomaterials, 11(5), 1144. https://doi.org/10.3390/nano11051144