Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoplastic Dispersions
2.2. Microalgae and Oyster Cultures
2.3. Experimental Design of Trophic Exposure
2.4. Water and Tissue Arsenic Quantification by ICP-OES
2.5. RNA Extraction and cDNA Synthesis
2.6. qPCR Assays and Validations
2.7. Statistical Analysis
3. Results
3.1. Oysters Biometric Parameters and Arsenic Bioaccumulation
3.2. Relative Genes Expression in Gills and Visceral Mass
3.2.1. Single Nanoplastic Treatments
3.2.2. Single Arsenic Treatment
3.2.3. Nanoplastic Arsenic Treatments
4. Discussion
4.1. Arsenic Uptake and Bioaccumulation in Oysters
4.2. Microalgae Growth under Nanoplastic Exposure
4.3. Effects of Nanoplastics and Arsenic on Genes Expression in Oysters
4.3.1. Single Nanoplastic Treatments
4.3.2. Single Arsenic Treatment
4.3.3. NPs+As Treatments
4.4. Models of Trophic Exposure Effects on the Studied Gene Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP. Marine Litter—Trash that Kills; United Nations Environment Programme; Swedish Environmental Protection Agency: Stockholm, Sweden, 2001.
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Briand, N. Familles de plastiques et leurs usages. Septième continent. MobiSci. Briand 2014. [Google Scholar]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Law, K.L.; Moret-Ferguson, S.; Maximenko, N.A.; Proskurowski, G.; Peacock, E.E.; Hafner, J.; Reddy, C.M. Plastic Accumulation in the North Atlantic Subtropical Gyre. Science 2010, 329, 1185–1188. [Google Scholar] [CrossRef] [Green Version]
- Baudrimont, M.; Arini, A.; Guégan, C.; Venel, Z.; Gigault, J.; Pedrono, B.; Prunier, J.; Maurice, L.; Ter Halle, A.; Feurtet-Mazel, A. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves). Environ. Sci. Pollut. Res. 2020, 27, 3746–3755. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, Tacoma, WA, USA, 9–11 September 2008; Technical Memorandum NOS-OR&R-30; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Cai, M.; He, H.; Liu, M.; Li, S.; Tang, G.; Wang, W.; Huang, P.; Wei, G.; Lin, Y.; Chen, B.; et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Gigault, J.; Balaresque, M.; Tabuteau, H. Estuary-on-a-chip: Unexpected results for nanoparticles fate and transport. Environ. Sci. Nano 2018, 5, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Koelmans, A.A.; Besseling, E.; Shim, W.J. Nanoplastics in the Aquatic Environment. Critical Review. Mar. Anthropog. Litter 2015, 325–340. [Google Scholar]
- Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Magrí, D.; Sánchez-Moreno, P.; Caputo, G.; Gatto, F.; Veronesi, M.; Bardi, G.; Catelani, T.; Guarnieri, D.; Athanassiou, A.; Pompa, P.P.; et al. Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano 2018, 12, 7690–7700. [Google Scholar] [CrossRef]
- Tien, C.; Chen, C.S. Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession. Arch. Environ. Contam. Toxicol. 2013, 64, 605–616. [Google Scholar] [CrossRef]
- Suhrhoff, T.J.; Scholz-Bottcher, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—A lab experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Davranche, M.; Veclin, C.; Pierson-Wickmann, A.-C.; El Hadri, H.; Grassl, B.; Rowenczyk, L.; Dia, A.; Ter Halle, A.; Blancho, F.; Reynaud, S.; et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 2019, 249, 940–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hadri, H.; Gigault, J.; Mounicou, S.; Grassl, B.; Reynaud, S. Trace Element Distribution in Marine Microplastics Using Laser Ablation-ICP-MS. Mar. Pollut. Bull. 2020, 160, 111716. [Google Scholar] [CrossRef] [PubMed]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Barnoud, J.; Monticelli, L. Polystyrene Nanoparticles Perturb Lipid Membranes. Phys. Chem. Lett. 2013, 5, 241–246. [Google Scholar] [CrossRef]
- Manfra, L.; Rotini, A.; Bergami, E.; Grassi, G.; Faleri, C.; Corsi, I. Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicol. Environ. Saf. 2017, 145, 557–563. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, K.; Hansson, L.A.; Cedervall, T. Nano-Plastics in the Aquatic Environment. Environ. Sci. Process. Impacts 2015, 17, 1712–1721. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Effects of Micro- and Nanoplastics on Aquatic Ecosystems: Current Research Trends and Perspectives. Mar. Pollut. Bull. 2017, 124, 624–632. [Google Scholar] [CrossRef]
- Richardson, S.D.; Kimura, S.Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92, 473–505. [Google Scholar] [CrossRef]
- Quik, J.T.K.; Vonk, J.A.; Hansen, S.F.; Baun, A.; Van De Meent, D. How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 2011, 37, 1068–1077. [Google Scholar] [CrossRef]
- Bergmann, M.; Gutow, L.; Klages, M. Nanoplastics in the Aquatic Environment. Critical Review. In Marine Anthropogenic Litter; Springer: Cham, Germany, 2015; pp. 325–340. [Google Scholar]
- Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastics in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 2017, 51, 13689–13697. [Google Scholar] [CrossRef] [PubMed]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsi, I.; Cherr, G.N.; Lenihan, H.S.; Labille, J.; Hassellov, M.; Canesi, L.; Dondero, F.; Frenzilli, G.; Hristozov, D.; Puntes, V.; et al. Common Strategies and Technologies for the Ecosafety Assessment and Design of Nanomaterials Entering the Marine Environment. ACS Nano 2014, 8, 9694–9709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Li, H.; Huangfu, X.; Liu, Y.; He, Q. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. Environ. Pollut. 2020, 258, 113760. [Google Scholar]
- Kulkarni, R.; Deobagkar, D.; Zinjarde, S. Metals in mangrove ecosystems and associated biota: A global perspective. Ecotoxicol. Environ. Saf. 2018, 153, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A. Sensitivity of Mangrove Ecosystem to Changing Climate; Springer: New Delhi, India, 2013; pp. 43–157. [Google Scholar]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cajaraville, M.P.; Bebianno, M.J.; Blasco, J.; Porte, C.; Sarasquete, C.; Viarengo, A. The use of biomarkers to asses the impact of pollution in coastal environment of the Iberian Peninsula: A practical approach. Sci. Total Environ. 2000, 247, 295–311. [Google Scholar] [CrossRef]
- Baudrimont, M.; Schäfer, J.; Marie, V.; Maury-Brachet, R.; Bossy, C.; Boudou, A.; Blanc, G. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philipinarum) in the Nord Médoc salt marshes (Gironde estuary, France). Sci. Total Environ. 2005, 337, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Arini, A.; Baudrimont, M.; Feurtet-Mazel, A.; Coynel, A.; Blanc, G.; Coste, M.; Delmas, F. Comparison of periphytic biofilm and filtering bivalves metal bioaccumulation (Cd and Zn) to monitor hydrosystem restoration after industrial remediation: A year of biomonitoring. Environ. Monit. 2011, 13, 3386–3398. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Rubí, J.R.; Luna-Acosta, A.; Etxebarría, N.; Soto, M.; Espinoza, F.; Ahrens, M.J.; Marigómez, I. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environ. Sci. Pollut. Res. 2017, 25, 13396–13415. [Google Scholar] [CrossRef]
- Arini, A.; Pierron, F.; Mornet, S.; Baudrimont, M. Bioaccumulation dynamics and gene regulation in a freshwater bivalve after aqueous and dietary exposures to gold nanoparticles and ionic gold. Environ. Sci. Pollut. Res. 2020, 27, 3637–3650. [Google Scholar] [CrossRef]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef]
- Tallec, K.; Paul-Pont, I.; Boulais, M.; Le Goïc, N.; González-Fernández, C.; Le Grand, F.; Bideau, A.; Quéré, C.; Cassone, A.L.; Lambert, C.; et al. Nanopolystyrene beads affect motility and reproductive success of oyster spermatozoa (Crassostrea Gigas). Nanotoxicology 2020, 14, 1039–1057. [Google Scholar] [CrossRef]
- Cedervall, T.; Hansson, L.A.; Lard, M.; Frohm, B.; Linse, S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 2012, 7, e32254. [Google Scholar] [CrossRef] [Green Version]
- Besseling, E.; Wang, B.; Lurling, M.; Koelmans, A.A. Nanoplastic Affects Growth of S. Obliquus and Reproduction of D. Magna. Environ. Sci. Technol. 2014, 48, 12336–12343. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.E.; Shumway, S.E. Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. J. Exp. Mar. Biol. Ecol. 2004, 300, 83–130. [Google Scholar] [CrossRef]
- Ward, J.E.; Kach, D.J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 2009, 68, 137–142. [Google Scholar]
- El Hadri, H.; Gigault, J.; Maxit, B.; Grassl, B.; Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 2020, 17, 100206. [Google Scholar] [CrossRef]
- Pessoni, L.; Veclin, C.; El Hadri, H.; Cugnet, C.; Davranche, M.; Pierson-Wickmann, A.C.; Gigault, J.; Grassl, B.; Reynaud, S. Soap- and metal-free polystyrene latex particles as a nanoplastic model. Environ. Sci. Nano 2019, 6, 2253–2258. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Lenz, R.; Enders, K.; Nielsen, T.G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. USA 2016, 113, E4121–E4122. [Google Scholar] [CrossRef] [Green Version]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of nano- and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Marie, V.; Gonzalez, P.; Baudrimont, M.; Boutet, I.; Moraga, D.; Bourdineaud, J.P.; Boudou, A. Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ. Toxicol. Chem. 2006, 25, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Strady, E.; Schäfer, J.; Baudrimont, M.; Blanc, G. Tracing cadmium contamination kinetics and pathways in oysters (Crassostrea gigas) by multiple stable Cd isotope spike experiments. Ecotoxicol. Environ. Saf. 2011, 74, 600–606. [Google Scholar] [CrossRef]
- Gonzalez Araya, R.; Mingant, C.; Petton, B.; Robert, R. Influence of diet assemblage on Ostrea edulis broodstock conditioning and subsequent larval development. Aquaculture 2012, 364–365, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Helm, M.M.; Bourne, N. Hatchery Culture of Bivalves. A Practical Manual; FAO Fisheries Technical Paper 471; FAO: Rome, Italy, 2004; p. 177. [Google Scholar]
- Saed, K.; Ismail, A.; Omar, H.; Kusnan, M. Heavy metal depuration in flat tree oysters Isognomon alatus under field and laboratory conditions. Toxicol. Environ. Chem. 2004, 86, 171–179. [Google Scholar] [CrossRef]
- Yap, C.K.; Azmizan, A.R.; Hanif, M.S. Biomonitoring of Trace Metals (Fe, Cu, and Ni) in the Mangrove Area of Peninsular Malaysia Using Different Soft Tissues of Flat Tree Oyster Isognomon alatus. Water Air Soil Pollut. 2011, 218, 19–36. [Google Scholar] [CrossRef]
- Penrose, W.R. Arsenic in the marine and aquatic environments: Analysis, occurrence and significance. CRC Crit. Rev. Environ. Control 1974, 4, 465–482. [Google Scholar] [CrossRef]
- Neff, J.M. Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917–927. [Google Scholar]
- Yang, H.C.; Fu, H.L.; Lin, Y.F.; Rosen, B.P. Pathways of Arsenic Uptake and Efflux. Curr. Top. Membr. 2012, 69, 325–358. [Google Scholar]
- Zhang, W.; Wang, W.-X.; Zhang, L. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary. Ecotoxicology 2013, 22, 671–682. [Google Scholar] [CrossRef]
- Langston, W.J. Availability of arsenic to estuarine and marine organisms: A field and laboratory evaluation. Mar. Biol. 1984, 80, 143–154. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Z.; Zhou, Y.; Liu, H.; Zhang, L. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata. Aquat. Toxicol. 2015, 158, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Coppola, F.; De Marchi, L.; Codella, V.; Pretti, C.; Chiellini, F.; Morelli, A.; Polese, G.; Soares, A.M.V.M.; Figueira, E. The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves. J. Hazard. Mater. 2018, 358, 484–493. [Google Scholar] [CrossRef]
- Malet, N.; Sauriau, P.G.; Ryckaert, M.; Malestroit, P.; Guillou, G. Dynamics and sources of suspended particulate organic matter in the Marennes-Oléron oyster farming bay: Insights from stable isotopes and microalgae ecology. Estuar. Coast. Shelf Sci. 2008, 78, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.; Beninger, P.G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 1985, 4, 187–200. [Google Scholar]
- Yang, L.; Willie, S.; Grinberg, P.; Pihillagawa Gedara, I.; Clancy, V.; Maxwell, P.; McRae, G.; Meija, J.; Mester, Z. DOLT-5: Dogfish Liver Certified Reference Material for Trace Metals and Other Constituents; National Research Council Canada: Ottawa, ON, Canada, 2014.
- Vicient, C.M.; Delseny, M. Isolation of Total RNA from Arabidopsis thaliana Seeds. Anal. Biochem. 1999, 268, 412–413. [Google Scholar] [CrossRef]
- Lemer, S. Assembled and Translated Transcriptomes; Harvard Dataverse. 2019. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/NBJBQP (accessed on 27 April 2013).
- Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature 2003, 422, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Levine, A. The p53 pathway: Positive and negative feedback loops. Oncogene 2005, 24, 2899–2908. [Google Scholar]
- Salvador, J.M.; Brown-Clay, J.D.; Fornace, A.J. gadd45 in Stress Signaling, Cell Cycle Control, and Apoptosis. Exp. Med. Biol. 2013, 793, 1–19. [Google Scholar]
- Defo, M.A.; Bernatchez, L.; Campbell, P.G.C.; Couture, P. Temporal variations in kidney metal concentrations and their implications for retinoid metabolism and oxidative stress response in wild yellow perch (Perca flavescens). Aquat. Toxicol. 2018, 202, 26–35. [Google Scholar] [CrossRef]
- Tristan, C.; Shahani, N.; Sedlak, T.W.; Sawa, A. The diverse functions of gapdh: Views from different subcellular compartments. Cell. Signal. 2011, 23, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Sirover, M.A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 741–751. [Google Scholar] [CrossRef]
- Al Kaddissi, S.; Legeay, A.; Elia, A.C.; Gonzalez, P.; Floriani, M.; Cavalie, I.; Massabuau, J.-C.; Gilbin, R.; Simon, O. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure. Environ. Toxicol. 2012, 29, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Arini, A.; Gourves, P.-Y.; Gonzalez, P.; Baudrimont, M. Metal detoxification and gene expression regulation after a Cd and Zn contamination: An experimental study on Danio Rerio. Chemosphere 2015, 128, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Franzellitti, S.; Fabbri, E. Cytoprotective responses in the Mediterranean mussel exposed to Hg2+ and CH3Hg+. Biochem. Biophys. Res. Commun. 2006, 351, 719–725. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Nam, Y.K. Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress. Fish. Aquat. Sci. 2016, 19, 21. [Google Scholar] [CrossRef] [Green Version]
- Maher, W.; Waring, J.; Krikowa, F.; Duncan, E.; Foster, S. Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environ. Chem. 2018, 15, 46. [Google Scholar] [CrossRef]
- Soegianto, A.; Winarni, D.; Handayani, U.S.; Hartati. Bioaccumulation, Elimination, and Toxic Effect of Cadmium on Structure of Gills and Hepatopancreas of Freshwater Prawn Macrobrachium sintangese (De Man, 1898). Water Air Soil Pollut. 2013, 224, 1575. [Google Scholar] [CrossRef]
- Arini, A.; Daffe, G.; Gonzalez, P.; Feurtet-Mazel, A.; Baudrimont, M. Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): A one-year depuration experiment. Environ. Pollut. 2014, 192, 74–82. [Google Scholar] [CrossRef]
- Perrier, F. Nano Contamination D’Organismes Aquatiques par des Particules Inorganiques: Transfert Trophique et Impacts Toxiques. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2017. [Google Scholar]
- Francesconi, K.A.; Edmonds, J.S. Arsenic and Marine Organisms. Adv. Inorg. Chem. 1996, 44, 147–189. [Google Scholar]
- Farrell, A.P.; Brauner, C.J.; Wood, C.M. Fish Physiology: Homeostasis and Toxicology of Essential Metals. Fish Physiol. 2012, 31, 300–301. [Google Scholar]
- Rahman, M.A.; Hasegawa, H.; Lim, R.P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118–135. [Google Scholar] [CrossRef] [Green Version]
- Ünlü, M.Y.; Fowler, S.W. Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis. Mar. Biol. 1979, 51, 209–219. [Google Scholar] [CrossRef]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Wang, J.; Huang, J.; Wang, J. Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas Helgol. Mar. Pollut. Bull. 2020, 158, 111403. [Google Scholar]
- Green, D.S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 2016, 216, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lebordais, M.; Manuel Gutierrez-Villagomez, J.; Gigault, J.; Baudrimont, M.; Langlois, V. Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus). Chemosphere 2021, 277, 130331. [Google Scholar] [CrossRef]
- Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 2010, 100, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doak, S.H. Nanogenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Ruiz, P.; Katsumiti, A.; Nieto, J.A.; Bori, J.; Jimeno-Romero, A.; Reip, P.; Arostegui, I.; Orbea, A.; Cajaraville, M.P. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus Galloprovincialis. Mar. Environ. Res. 2015, 111, 107–120. [Google Scholar] [CrossRef]
- Wegner, A.; Besseling, E.; Foekema, E.M.; Kamermans, P.; Koelmans, A.A. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis). Environ. Toxicol. Chem. 2012, 31, 2490–2497. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Feng, S.S. Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery. Pharm. Res. 2013, 30, 2512–2522. [Google Scholar] [CrossRef]
- Rosety, M.; Ordóñez, F.J.; Rosety Rodríguez, M.; Rosety, J.M.; Rosety, I.; Carrasco, C.; Ribelles, A. Acute toxicity of anionic surfactants sodium dodecyl sulphate (SDS) and linear alkylbenzene sulphonate (LAS) on the fertilizing capability of gilthead (Sparus aurata L.) sperm. Histol. Histopathol. 2001, 16, 839–843. [Google Scholar]
- Hrenovic, J.; Ivankovic, T. Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Open Life Sci. 2007, 2, 405–414. [Google Scholar] [CrossRef]
- Jahan, K.; Balzer, S.; Mosto, P. Toxicity of Nonionic Surfactants. WIT Trans. Ecol. Environ. 2008, 110, 281–290. [Google Scholar]
- Pikuda, O.; Xu, E.G.; Berk, D.; Tufenkji, N. Toxicity Assessments of Micro- and Nanoplastics Can Be Confounded by Preservatives in Commercial Formulations. Environ. Sci. Technol. Lett. 2018, 6, 21–25. [Google Scholar] [CrossRef]
- Cai, L.; Hu, L.; Shi, H.; Ye, J.; Zhang, Y.; Kim, H. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 2018, 197, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Beyersmann, D. Effects of carcinogenic metals on gene expression. Toxicol. Lett. 2002, 127, 63–68. [Google Scholar] [CrossRef]
- Minier, C.; Borghi, V.; Moore, M.N.; Porte, C. Seasonal variation of MXR and stress proteins in the common mussel, Mytilus galloprovincialis. Aquat. Toxicol. 2000, 50, 167–176. [Google Scholar] [CrossRef]
- El Haj, Y.; Bohn, S.; Souza, M.M. Tolerance of native and invasive bivalves under herbicide and metal contamination: An ex vivo approach. Environ. Sci. Pollut. Res. 2019, 26, 31198–31206. [Google Scholar]
- Holmes, L.A.; Turner, A.; Thompson, R. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 2014, 167, 25–32. [Google Scholar] [CrossRef]
- Dawson, A.L.; Kawaguchi, S.; King, C.K.; Townsend, K.A.; King, R.; Huston, W.M.; Bengtson Nash, S.M. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Tran, D.; Ciret, P.; Ciutat, A.; Durrieu, G.; Massabuau, J.C. Estimation of potential and limits of bivalve closure response to detect contaminants: Application to cadmium. Environ. Toxicol. Chem. 2003, 22, 914–920. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.-X. Reconstructing the Biokinetic Processes of Oysters to Counteract the Metal Challenges: Physiological Acclimation. Environ. Sci. Technol. 2012, 46, 10765–10771. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.; Barboza, L.G.A.; Branco, V.; Figueiredo, N.; Carvalho, C.; Guilhermino, L. Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicol. Environ. Saf. 2018, 164, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Jin, S.-R.; Chen, Z.-Z.; Gao, J.-Z.; Liu, Y.-N.; Liu, J.-H.; Feng, X.S. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ. Pollut. 2018, 243, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current Knowledge and Future Perspectives. J. Hazard. Mater. 2020, 405, 123913. [Google Scholar] [CrossRef]
Nanoparticles | Z-Average (nm)/PDI | Potential ζ (mV) 5 mM NaCl, pH 7 |
---|---|---|
NPG | 361 ± 40 nm/0.210 | −30.2 ± 1.1 |
PSC | 354 ± 30 nm/0.190 | −44.0 ± 2.0 |
PSL | 390 ± 20 nm/0.002 | −42.0 ± 2.0 |
A—Gill. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Functions | Genes | NPG 10 | PSC 10 | PSL 10 | NPG 100 | PSC 100 | PSL 100 | As | As+NPG 10 | As+PSC 10 | As+PSL 10 | As+NPG 100 | As+PSC 100 | As+PSL 100 |
Endocytosis | cav | / | / | / | 0.14 ± 0.21a | 2.78 ± 1.10b | / | / | / | / | / | / | / | / |
cltc | / | / | / | / | / | / | / | / | / | / | / | / | / | |
Cell cycle regulation | bax | / | ND | ND | / | ND | ND | 0.03 ± 0.01a | 0.28 ± 0.29a | ND | ND | / | ND | ND |
gadd45 | / | 0.20 ± 0.06a | 0.14 ± 0.03ab | / | 0.35 ± 0.14a | 0.29 ± 0.11ab | / | / | 0.11 ± 0.01b | 0.17 ± 0.07ab | / | 0.11 ± 0.04b | 0.11 ± 0.01b | |
p53 | / | / | / | / | / | / | / | / | / | / | / | / | / | |
Oxidative stress | cat | / | / | 0.08 ± 0.02a | 7.13 ± 3.29b | ND | 4.50 ± 1.54b | / | / | ND | 0.07 ± 0.08ac | / | 0.12 ± 0.04a | 0.01 ± 0.00c |
gapdh | / | / | / | / | ND | / | / | / | / | / | / | / | / | |
sod1 | / | 0.33 ± 0.05a | 0.17 ± 0.07a | / | ND | 7.89 ± 1.13b | 2.86 ± 0.68b | / | 0.30 ± 0.10a | / | / | / | / | |
Detoxification | mdr | / | / | / | / | ND | / | / | / | / | / | / | / | / |
Mitochondrial metabolism | 12S | / | / | / | / | 0.43 ± 0.11a | / | / | / | / | 0.24 ± 0.05a | ND | 0.32 ± 0.12a | 0.30 ± 0.11a |
cox1 | / | / | / | / | / | / | 7.33 ± 3.81a | / | / | / | / | / | 0.22 ± 0.11b | |
B—Visceral mass. | ||||||||||||||
Functions | Genes | NPG 10 | PSC 10 | PSL 10 | NPG 100 | PSC 100 | PSL 100 | As | As+NPG 10 | As+PSC 10 | As+PSL 10 | As+NPG 100 | As+PSC 100 | As+PSL 100 |
Endocytosis | cav | / | / | / | / | ND | / | 33.74 ± 23.30a | 0.13 ± 0.05b | / | / | / | 15.62 ± 11.55a | / |
cltc | / | / | / | / | / | 3.39 ± 1.32 | / | / | / | / | / | / | / | |
Cell cycle regulation | bax | / | / | 0.18 ± 0.04a | / | / | / | 0.03 ± 0.01b | 0.07 ± 0.06ab | 0.18 ± 0.03a | ND | 0.14 ± 0.03a | / | ND |
gadd45 | / | 0.21 ± 0.10a | 0.24 ± 0.04a | / | 0.18 ± 0.13a | / | / | / | 0.18 ± 0.04a | 0.18 ± 0.04a | / | 0.21 ± 0.11a | 0.23± 0.11a | |
p53 | / | / | / | / | / | / | / | / | / | / | / | / | / | |
Oxidative stress | cat | / | / | / | / | / | / | / | / | ND | ND | / | / | ND |
gapdh | / | 1.66 ± 0.15a | 1.35 ± 0.08a | / | / | 2.89 ± 1.11a | / | 0.30 ± 0.20b | / | / | / | / | 1.81 ± 0.99a | |
sod1 | 0.49 ± 0.29a | / | 0.42 ± 0.28a | 0.49 ± 0.41a | 0.29 ± 0.03a | 7.63 ± 3.18b | / | / | 0.26 ± 0.05a | 0.36 ± 0.14a | / | / | 0.39 ± 0.26a | |
Detoxification | mdr | / | / | / | / | / | 2.73 ± 0.59a | / | 0.47 ± 0.36b | / | / | 0.26 ± 0.10b | / | / |
Mitochondrial metabolism | 12S | / | / | / | / | / | / | / | / | / | / | / | / | / |
cox1 | / | / | / | / | / | / | / | / | / | / | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebordais, M.; Venel, Z.; Gigault, J.; Langlois, V.S.; Baudrimont, M. Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus). Nanomaterials 2021, 11, 1151. https://doi.org/10.3390/nano11051151
Lebordais M, Venel Z, Gigault J, Langlois VS, Baudrimont M. Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus). Nanomaterials. 2021; 11(5):1151. https://doi.org/10.3390/nano11051151
Chicago/Turabian StyleLebordais, Marc, Zélie Venel, Julien Gigault, Valerie S. Langlois, and Magalie Baudrimont. 2021. "Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus)" Nanomaterials 11, no. 5: 1151. https://doi.org/10.3390/nano11051151
APA StyleLebordais, M., Venel, Z., Gigault, J., Langlois, V. S., & Baudrimont, M. (2021). Molecular Impacts of Dietary Exposure to Nanoplastics Combined or Not with Arsenic in the Caribbean Mangrove Oysters (Isognomon alatus). Nanomaterials, 11(5), 1151. https://doi.org/10.3390/nano11051151